An dieser Stelle sei auf eine Reihe von Publikationen zum Thema HTP hingewiesen:

  • Knötig, P.; Etzold, H.; Wirth, B. (2021). „Model-based evaluation of hydrothermal treatment for the energy efficient dewatering and drying of sewage sludge“. Processes (ISSN: 2227-9717), Vol. 9, Nr. 8, 1346. DOI: 10.3390/pr9081346.
  • Lühmann, T.; Wirth, B. (2020). „Sewage sludge valorization via hydrothermal carbonization: Optimizing dewaterability and phosphorus release“. Energies (ISSN: 1996-1073), Vol. 13, Nr. 17, 4417. DOI: 10.3390/en13174417.
  • Klemm, M.; Kröger, M.; Görsch, K.; Lange, R.; Hilpmann, G.; Lali, F.; et al. (2020). „Experimental evaluation of a new approach for a two-stage hydrothermal biomass liquefaction process“. Energies (ISSN: 1996-1073), Vol. 13, Nr. 14, 3692. DOI: 10.3390/en13143692.
  • Klemm, M.; Köchermann, J.; Lühmann, T.; Nelles, M. (2019). „Status und Perspektiven der hydrothermalen Carbonisierung (HTC) für biogene Abfälle und Reststoffe“. Müll und Abfall (ISSN: 0027-2957), Vol. 51, Nr. 4, S. 182–189.
  • Köchermann, J.; Schreiber, J.; Klemm, M. (2019). „Conversion of d-xylose and hemicellulose in water/ethanol mixtures“. ACS Sustainable Chemistry & Engineering (ISSN: 2168-0485), Vol. 7, Nr. 14, S. 12323–12330. DOI: 10.1021/acssuschemeng.9b01697.
  • Meisel, K.; Clemens, A.; Fühner, C.; Breulmann, M.; Majer, S.; Thrän, D. (2019). „Comparative life cycle assessment of HTC concepts valorizing sewage sludge for energetic and agricultural use“. Energies (ISSN: 1996-1073), Vol. 12, Nr. 5, 786. DOI: 10.3390/en12050786.
  • Köchermann, J.; Görsch, K.; Wirth, B.; Mühlenberg, J.; Klemm, M. (2018). „Hydrothermal carbonization: Temperature influence on hydrochar and aqueous phase composition during process water recirculation“. Journal of Environmental Chemical Engineering (ISSN: 2213-3437), Vol. 6, Nr. 4, S. 5481–5487. DOI: 10.1016/j.jece.2018.07.053.
  • Köchermann, J.; Mühlenberg, J.; Klemm, M. (2018). „Kinetics of hydrothermal furfural production from organosolv hemicellulose and d-xylose“. Industrial & Engineering Chemistry Research (ISSN: 0888-5885), Vol. 57, Nr. 43, S. 14417–14427. DOI: 10.1021/acs.iecr.8b03402.
  • Kröger, M.; Klemm, M.; Nelles, M. (2018). „Hydrothermal disintegration and extraction of different microalgae species“. Energies (ISSN: 1996-1073), Vol. 11, Nr. 2, 450. DOI: 10.3390/en11020450.
  • Garlapalli, R. K.; Wirth, B.; Reza, M. T. (2016). „Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation“. Bioresource Technology (ISSN: 0960-8524), Vol. 220, S. 168–174. DOI: 10.1016/j.biortech.2016.08.071.
  • Wirth, B.; Reza, M. T. (2016). „Continuous anaerobic degradation of liquid condensate from steam-derived hydrothermal carbonization of sewage sludge“. ACS Sustainable Chemistry & Engineering (ISSN: 2168-0485), Vol. 4, Nr. 3, S. 1673–1678. DOI: 10.1021/acssuschemeng.5b01607.
  • Wirth, B.; Reza, M. T.; Mumme, J. (2015). „Influence of digestion temperature and organic loading rate on the continuous anaerobic treatment of process liquor from hydrothermal carbonization of sewage sludge“. Bioresource Technology (ISSN: 0960-8524), Vol. 198, S. 215–222. DOI: 10.1016/j.biortech.2015.09.022.