Publications
2025
• Matzner, N., Otto, D., Polzin, C., Hauck, J., Förster, J., Wollnik, R., Siedschlag, D., & Thrän, D. (2025). Bisher mehr Hürden als Chancen für bio-CDR: Berichte aus Stakeholder-Workshops zu biomassebasiertem Carbon Dioxide Removal (CDR) (UFZ Discussion Papers).https://www.ufz.de/index.php?de=14487.
• Richter, S.; Szarka, N.; Bezama, A.; Thrän, D. (2025). "Enhancing the circular bioeconomy transition in Germany: A systematic scenario analysis". Sustainable Production and Consumption, Vol. 53. S. 125–146. DOI: 10.1016/j.spc.2024.12.004.
• Thrän, D.; Borchers, M.; Lenz, V.; Jordan, M.; Markus, T.; Matzner, N.; Oehmichen, K.; Otto, D.; Radtke, K. S.; Reshef, N.; Sadr, M.; Siedschlag, D.; Wollnik, R. (2025). The role of BECCS in Germany: a key to sustainable and permanent CO2 removal? Environmental Research Communications. DOI: 10.1088/2515-7620/ae02ee.
• Wollnik, R., Borchers, M., Seibert, R., Abel, S., Herrmann, P., Elsasser, P., Hildebrandt, J., Mühlich, M., Eisenschmidt, P., Meisel, K., Henning, P., Radtke, K. S., Selig, M., Kazmin, S., Szarka, N., & Thrän, D. (2025). Factsheets for bio-based carbon dioxide removal options in Germany.https://doi.org/10.48480/mj9d-6y33.
• Wollnik, R.; Szarka, N.; Matzner, N.; Otto, D.; Sadr, M.; Esmaeili Aliabadi, D.; Tremmel, R.; Röbisch, J.; Thrän, D. (2025). Scenario Storylines for Carbon Dioxide Removal in Germany: Drawing From Regional Perspectives. GCB Bioenergy, Vol. 17, Nr. 9. DOI: 10.1111/gcbb.70075.
• Yao, W., Morganti, T. M., Wu, J., Borchers, M., Anschütz, A., Bednarz, L. K., Bhaumik, A., Böttcher, M., Burkhard, K., Cabus, T., Chua, A. S., Diercks, I., Esposito, M., Fink, M., Fouqueray, M., Gasanzade, F., Geilert, S., Hauck, J, Havermann, F., et al. (2025). Exploring Site‐Specific Carbon Dioxide Removal Options With Storage or Sequestration in the Marine Environment – The 10 Mt CO2 yr−1 Removal Challenge for Germany. Earth's Future, 13(4), Article e2024EF004902. https://doi.org/10.1029/2024EF004902.2024
• Dotzauer, M. (2024). Determining optimal component configurations for flexible biogas plants based on power prices of 2020–2022 and the legislation framework in Germany. Renewable Energy, Vol. 236. DOI: 10.1016/j.renene.2024.121252.
• Dotzauer, M.; Radtke, K. S.; Jordan, M.; Thrän, D. (2024). Advanced SQL-Database for bioenergy technologies - A catalogue for bio-resources, conversion technologies, energy carriers, and supply applications. Heliyon, Vol. 10, Nr. 3, e25434. DOI: 10.1016/j.heliyon.2024.e25434.
• Mäki, E.; Hennig, C.; Thrän, D.; Lange, N.; Schildhauer, T.; Schipfer, F. (2024). Defining bioenergy system services to accelerate the integration of bioenergy into a low‐carbon economy. Biofuels, Bioproducts and Biorefining, Vol. 18, Nr. 4, S. 793–803. DOI: 10.1002/bbb.2649.
• Wollnik, R., Borchers, M., Seibert, R. et al. (2024). Dynamics of bio-based carbon dioxide removal in Germany. Scientific Reports, 14, 20395. https://doi.org/10.1038/s41598-024-71017-x.2023
• Hennig, C.; Olsson, O.; Thrän, D.; Mäki Elina (2023). BECCUS and flexible bioenergy – finding the balance: IEA Bioenergy Task 44 and Task 40. 232 S. ISBN: 0203961145.
• Szarka, N.; García Laverde, L.; Thrän, D.; Kiyko, O.; Ilkiv, M.; Moravckíková, D.; Cudlínová, E.; Lapka, M.; Hatvani, N.; Koós, Á.; Luks, A.; Martín Jimenez, I. (2023). Stakeholder Engagement in the Co-Design of Regional Bioeconomy Strategies. Sustainability, Vol. 15, Nr. 8. DOI: 10.3390/su15086967.
• Szarka, N.; Schmid, C.; Pfeiffer, D.; Thrän, D. (2023). The System Role of Smart Bioenergy: A Multicriteria Assessment. Chemical Engineering & Technology, Vol. 46, Nr. 3, S. 550–558. DOI: 10.1002/ceat.202100069.2022
• Dotzauer, M.; Oehmichen, K.; Thrän, D.; Weber, C. (2022). Empirical greenhouse gas assessment for flexible bioenergy in interaction with the German power sector. Renewable Energy, Nr. 181, S. 1100–1109. DOI: 10.1016/j.renene.2021.09.094.
• Fritsche, U. R.; Hennig, C.; Liebetrau, J.; Majer, S.; Monaghan, R. (2022). Renewable gases: Current state and Perspectives of Biogas, Biomethane, and Renewable Hydrogen. Vortrag gehalten: 30th European Biomass Conference and Exhibition, [online], 09.-12.05.2022.
• Janke, L.; Ruoss, F.; Hahn, A.; Weinrich, S.; Nordberg, Å. (2022). Modelling synthetic methane production for decarbonising public transport buses: A techno-economic assessment of an integrated power-to-gas concept for urban biogas plants. Energy Conversion and Management, Nr. 259. DOI: 10.1016/j.enconman.2022.115574.
• Olsson, O.; Becidan, M.; Bang, C.; Abdalla, N.; Bürck, S.; Fehrenbach, H.; Harris, Z. M.; Thrän, D.; Cavalett, O.; Cherubini, F.; Hennig, C. (2022). Deployment of BECCUS value chains: From concept to commercialization. Synthesis Report. IEA Bioenergy. ISBN: 979-12-80907-22-6.
• Richter, S.; Szarka, N.; Bezama, A.; Thrän, D. (2022). What Drives a Future German Bioeconomy?: A Narrative and STEEPLE Analysis for Explorative Characterisation of Scenario Drivers. Sustainability, Vol. 14, Nr. 5. DOI: 10.3390/su14053045.
• Schipfer, F.; Mäki, E.; Schmieder, U.; Lange, N.; Schildhauer, T.; Hennig, C.; Thrän, D. (2022). Status of and expectations for flexible bioenergy to support resource efficiency and to accelerate the energy transition. Renewable and Sustainable Energy Reviews, Nr. 158. DOI: 10.1016/j.rser.2022.112094.2021
• Schmid, C.; Hahn, A. (2021). Potential CO2 utilisation in Germany: An analysis of theoretical CO2 demand by 2030. Journal of CO2 Utilization, Nr. 50. DOI: 10.1016/j.jcou.2021.101580.
• Szarka, N.; Haufe, H.; Lange, N.; Schier, F.; Weimar, H.; Banse, M.; Sturm, V.; Dammer, L.; Piotrowski, S.; Thrän, D. (2021). Biomass flow in bioeconomy: Overview for Germany. Renewable and Sustainable Energy Reviews, Nr. 150. DOI: 10.1016/j.rser.2021.111449.2020
• Formann, S.; Hahn, A.; Janke, L.; Stinner, W.; Sträuber, H.; Logrono, W.; Nikolausz, M. (2020). Beyond sugar and ethanol production: Value generation opportunities through sugarcane residues. Frontiers in Energy Research, Vol. 8. DOI: 10.3389/fenrg.2020.579577.
• Hahn, A.; Szarka, N.; Thrän, D. (2020). German Energy and Decarbonization Scenarios: “Blind Spots” With Respect to Biomass-Based Carbon Removal Options. Frontiers in Energy Research, Vol. 8. DOI: 10.3389/fenrg.2020.00130.
• Lauer, M.; Leprich, U.; Thrän, D. (2020). Economic assessment of flexible power generation from biogas plants in Germany's future electricity system. Renewable Energy, Nr. 146, S. 1471–1485. DOI: 10.1016/j.renene.2019.06.163.
• Lenz, V.; Szarka, N.; Jordan, M.; Thrän, D. (2020). Status and perspectives of biomass use for industrial process heat for industrialized countries, with emphasis on Germany. Chemical Engineering & Technology, Vol. 43, Nr. 8, S. 1469–1484. DOI: 10.1002/ceat.202000077.
• Schmidt-Baum, T.; Thrän, D. (2020). Nine Measures to Take: Unlocking the Potential for Biomass Heat in the German Industry and the Trade, Commerce, and Service Sector. Energies, Vol. 13, Nr. 18. DOI: 10.3390/en13184614.
• Schüch, A.; Hennig, C. (2020). Abfall- und reststoffbasierte Bioökonomie. In: Thrän, D.; Moesenfechtel, U. (Hrsg.), Das System Bioökonomie. Springer. DOI: 10.1007/978-3-662-60730-5_8.
• Szarka, N.; Schmid, C.; Pfeiffer, D.; Thrän, D. (2020). All in One: A Comprehensive Goal and Indicator System for Smart Bioenergy. Chemical Engineering & Technology, Vol. 43, Nr. 8, S. 1554–1563. DOI: 10.1002/ceat.202000033.
• Tafarte, P.; Kanngießer, A.; Dotzauer, M.; Meyer, B.; Grevé, A.; Millinger, M. (2020). Interaction of Electrical Energy Storage, Flexible Bioenergy Plants and System-friendly Renewables in Wind- or Solar PV-dominated Regions. Energies, Vol. 13, Nr. 5. DOI: 10.3390/en13051133.
• Thoni, T.; Beck, S.; Borchers, M.; Förster, J.; Görl, K.; Hahn, A.; Mengis, N.; Stevenson, A.; Thrän, D. (2020). Deployment of Negative Emissions Technologies at the National Level: A Need for Holistic Feasibility Assessments. Frontiers in Climate, Vol. 2. DOI: 10.3389/fclim.2020.590305.
• Thrän, D.; Bauschmann, M.; Dahmen, N.; Erlach, B.; Heinbach, K.; Hirschl, B.; Hildebrand, J.; Rau, I.; Majer, S.; Oehmichen, K.; Schweizer-Ries, P.; Hennig, C. (2020). Bioenergy beyond the German “Energiewende: Assessment framework for integrated bioenergy strategies. Biomass and Bioenergy, Vol. 142. DOI: 10.1016/j.biombioe.2020.105769.2019
• Dotzauer, M.; Pfeiffer, D.; Lauer, M.; Pohl, M.; Mauky, E.; Bär, K.; Sonnleitner, M.; Zörner, W.; Hudde, J.; Schwarz, B.; Faßauer, B.; Dahmen, M.; Rieke, C.; Herbert, J.; Thrän, D. (2019). How to measure flexibility: performance indicators for demand driven power generation from biogas plants. Renewable Energy, Nr. 134, S. 135–146. DOI: 10.1016/j.renene.2018.10.021.
• Schmid, C.; Horschig, T.; Pfeiffer, A.; Szarka, N.; Thrän, D. (2019). Biogas Upgrading: A Review of National Biomethane Strategies and Support Policies in Selected Countries. Energies, Vol. 12, Nr. 19. DOI: 10.3390/en12193803.
• Szarka, N.; Lenz, V.; Thrän, D. (2019). The crucial role of biomass-based heat in a climate-friendly Germany–A scenario analysis. Energy, Vol. 186. DOI: 10.1016/j.energy.2019.115859.2018
• Szarka, N.; Wolfbauer, J.; Bezama, A. (2018). A systems dynamics approach for supporting regional decisions on the energetic use of regional biomass residues. Waste Management & Research, Vol. 36, Nr. 4, S. 332–341. DOI: 10.1177/0734242X18757626.2017
• Lauer, M.; Dotzauer, M.; Hennig, C.; Lehmann, M.; Nebel, E.; Postel, J.; Szarka, N.; Thrän, D. (2017). Flexible power generation scenarios for biogas plants operated in Germany: impacts on economic viability and GHG emissions. International Journal of Energy Research, Vol. 41, Nr. 1, S. 63–80. DOI: 10.1002/er.3592.
• Lauer, M.; Thrän, D. (2017). Biogas plants and surplus generation: Cost driver or reducer in the future German electricity system? Energy Policy, Nr. 109, S. 324–336. DOI: 10.1016/j.enpol.2017.07.016.
• Szarka, N.; Eichhorn, M.; Kittler, R.; Bezama, A.; Thrän, D. (2017). Interpreting long-term energy scenarios and the role of bioenergy in Germany. Renewable and Sustainable Energy Reviews, Nr. 68, Part 2, S. 1222–1233. DOI: 10.1016/j.rser.2016.02.016.
• Tafarte, P.; Hennig, C.; Dotzauer, M.; Thrän, D. (2017). Impact of flexible bioenergy provision on residual load fluctuation: A case study for the TransnetBW transmission system in 2022. Energy, Sustainability and Society, Vol. 7, Nr. 3. DOI: 10.1186/s13705-017-0108-1.
• Trommler, M.; Barchmann, T.; Dotzauer, M.; Cieleit, A. (2017). Can Biogas Plants Contribute to Lower the Demand for Power Grid Expansion? Chemical Engineering & Technology, Vol. 40, Nr. 2, S. 359–366. DOI: 10.1002/ceat.201600230.2013
• Szarka, N.; Scholwin, F.; Trommler, M.; Jacobi, H.-F.; Eichhorn, M.; Ortwein, A.; Thrän, D. (2013). A novel role for bioenergy: A flexible, demand-oriented power supply. Energy, Nr. 61, S. 18–26. DOI: 10.1016/j.energy.2012.12.053.