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1 Introduction 

Currently, a large share of the primary energy supply in Germany is provided by fossil fuels [85], Figure 

1. These fuels were formed in prehistoric geological times from natural degradation of dead phyto- and 

zoomass. The rapid exploitation and enduring combustion of these energy sources has led to an in-

creasing imbalance in the global carbon cycle over the last hundred years [437, 482]. Fossil fuels that 

were compressed over a very long period of time are now being depleted, utilised for energy provision 

and released into the atmosphere in the form of climate-relevant greenhouse gases.1 

 

a including total share of power exchange (-0.9 %)  |  b including biowaste (1.0 %) 

Figure 1: Primary energy supply (12,832 PJ) in Germany in 2019 [85] 

In order to cope with the long-term consequences of finite energy reserves and increasing environmen-

tal pollution, low energy consumption and an efficient use of the available energy reserves are required. 

This includes sensible energy and environmental policies as well as intensive research in the field of 

modern and efficient energy conversion processes. However, these approaches do not solve the prob-

lem of a one-sided primary energy supply based on fossil fuels; instead, they only prolong it. Thus, sys-

tematically replacing primary fossil-based energy sources with renewable energies over the long term 

represents the most important alternative to the conventional energy sector [253, 571]. 

Renewable or regenerative energies are primary energy forms regarded as sustainable or inexhaustible 

by human standards. This means that the energy converted from sun, wind, water, geothermal heat, 

biomass or tides is considered regenerative [253]. Thus, the sustainable exploitation and consistent 

use of renewable fuels promises to reduce the anthropogenic increase of major greenhouse gases in 

the long term by supplying climate-neutral energy. Because the area-specific or volume-specific energy 

density of these energy sources is comparatively low, large-scale systems are required. Furthermore, 

they depend strongly on specific environmental conditions. Thus, many renewable energies can only be 

used on a non-continuous basis, since the amount of transformed energy depends on the individual 

location, weather or season [253, 551, 571]. 

                                                      
1 The combustion of fossil fuels and the effects of land use changes are now regarded as the main cause of the recent in-

crease in carbon dioxide concentrations in the atmosphere [507]. The extent to which the anthropogenic greenhouse effect will 

have a long-term impact on the climate and the environment has yet to be fully established due to the complex dependencies 

[344, 482]. As a result, calculation result of numerous climate models predict consequences of varying severity [489]. 
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Energy from biomass 

Biomass accounts for the largest share of primary energy supplied from renewable energies, Figure 1. 

In principle, all matter of organic origin (i.e., carbonaceous matter) is considered as biomass.2 In terms 

of the specific utilisation of renewable energy sources, this primarily includes energy crops, harvest res-

idues, organic by-products and waste. A variety of conversion technologies are available today that fur-

nish the chemically bound energy of biomass in the form of solid, liquid or gaseous fuels to provide heat 

and power, Figure 2. 

 

Figure 2: Conversion technologies (pathways) for energetic utilisation of biomass [252] 

The properties and availability of organic substrates, as well as the resulting technical, ecological and 

economic requirements or conditions, determine the choice of conversion technology [252]. While solid 

bioenergy sources containing lignocellulose with a low water content can be converted into sustainable 

energy carriers by thermochemical carbonisation, gasification or pyrolysis, substrates with a high water 

                                                      
2 “The differentiation of biomass from fossil fuels begins with peat, the fossil-based secondary product of the degradation 

process. As a result, peat in the strict sense of this definition no longer counts as biomass.” [252, pp. 2] 
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content can be used efficiently in biochemical conversion processes to provide liquid or gaseous fuels. 

In addition to the selective use of energy crops like maize or grain silage, complex wastes and by-

products from agriculture, industry (food, pharmaceutical or paper industries) and municipality are thus 

particularly suited for anaerobic or aerobic treatment. Moreover, applied methods of anaerobic fermen-

tation or aerobic respiration differ in their actual reaction conditions, in the microorganisms involved, 

and in their process-specific degradation products as illustrated in Figure 3. 

 
(a) mass and energy dissipation during respiration of glucose (pH value = 7) 

 

 
(b) mass and energy dissipation during anaerobic fermentation of glucose (pH value = 7) 

Figure 3: Comparison of product formation during (a) aerobic and (b) anaerobic treatment [173] 

Biochemical conversion of one mole or 180 g of glucose produces a free enthalpy of ΔG°' = 2780 kJ 

during complete oxidisation [480]. In the case of high volumetric loads, utilisation of an additional 96 g 

of oxygen enables 50 % of the glucose to be converted to 186 g of carbon dioxide and water through 

aerobic respiration, Figure 3a.3 Based on numerous anabolic reaction pathways of glycolysis (EMBDEN-

MEYERHOF-pathway) and utilization of 20 mol ATP, 90 g of microbial biomass is produced. With an ener-

gy content of 22 kJ per g of biomass the potential enthalpy of glucose result in 69 % of biomass and 

31 % of reaction heat under these reaction conditions [173]. During anaerobic digestion the fermenta-

tion of glucose yields only 4.3 mol ATP in total, so that the microorganisms involved gain less energy for 

growth related processes, Figure 3b. Consequently, a large part (88.5 %) of the free enthalpy of glucose 

is stored as methane in an energy-rich degradation product.  

                                                      
3 In principle, the product ratio of respiration and bacterial growth shifts depending on the throughput rate of the process. For 

example, up to 70 % of glucose can be oxidised to carbon dioxide and water at a low organic loading using 4.3 mol or 137.6 g 

of oxygen [173]. 
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Thus, aerobic conversion processes are generally applied for biomass treatment in the wastewater and 

waste management sectors, whereas the anaerobic biogas process is suited for valuable energy supply 

from organic, fermentable substrates or waste [252]. 

Biogas technology in Germany 

Due to more than 9,000 large-scale anaerobic digestion plants, biogas technology is making a signifi-

cant contribution to the sustainable energy supply in Germany. With a total of around 5,901 MWel of 

installed electrical capacity (on-site electricity generation), electricity generated from biogas amounted 

to around 31.6 TWh in 2019 (including 2.6 TWh from biomethane) and thus accounts for over 58 % of 

total electricity generation from biomass [82, 149]. 

In Germany, anaerobic digestion plants usually use renewable raw materials and animal excrements 

(manure and dung) to operate, Figure 4. Anaerobic digestion of municipal biowaste or industrial, com-

mercial and agricultural residues represents only a very small fraction (about 5 %) of mass-specific sub-

strate use in Germany [149]. 

 

a industrial, commercial and agricultural residues | b cereal whole crop silage (7 %) and cereal grain (2 %) 

c unspecified renewable resources (incl. 0.4 % millet and 0.2 % corn-cob-mix) | d unspecified manure and dung 

Figure 4: Mass-specific substrate use in German anaerobic digestion (biogas) plants in 2018 [149] 

After proper substrate preparation and storage (ensiling), energy crops such as maize, grass or grains 

are usually used in combination with cattle or pig manure in agricultural biogas plants, Figure 5. Suita-

ble environmental conditions are then created by controlling temperature and mixing of the fermenta-

tion medium to allow for anaerobic digestion of the fermentable substrate components used for biogas 

production. 

Biogas is a gas mixture consisting of 45 % to 75 % by volume of methane and 25 % to 45 % by volume 

of carbon dioxide [477]. Depending on the substrates used and plant operation, the gas may also con-

tain interfering and harmful components such as water vapour, hydrogen sulphide or ammonia – as 

well as other trace gases of halogenated hydrocarbons or siloxanes – which limit the direct use of the 

energy carrier [477, 611]. For feeding biomethane into the local natural gas grid, the raw gas must be 

processed and conditioned to natural gas quality (biomethane) through corresponding purification and 

separation processes [3, 25, 487]. 

 



Introduction  

 
 

14 

Usually the biogas undergoes desulphurisation [131, 240, 569, 611] and drying as it is converted into 

heat and power directly on site in a combined heat and power plant (CHP). Part of the energy can be 

used for own electricity and heat requirements, while the remaining part can be fed into the local power 

grid and used to heat local homes, stables or to supply local heating.4 Depending on the specific nutri-

ent and emission limits [123, 147], the fermentation residues (digestate) can be recycled into fertiliser. 

 

Figure 5: Simplified process scheme of an agricultural biogas plant [148] 

The Renewable Energy Sources Act (Gesetz für den Ausbau erneuerbarer Energie, EEG) has resulted in 

a nine fold increase in the number of biogas plants in Germany from around 1,000 in the year 2000 to 

approximately 9,160 in the year 2020 [149, 463, 464]. However, due to ongoing amendments to the 

EEG, the original attractiveness of constructing agricultural biogas plants has now declined considera-

bly. For example, the high remuneration for using renewable raw materials and innovative plant tech-

nology (including waste heat utilisation) was eliminated in the 2012 version of the EEG [81]. In an up-

dated version from 2014, feedstock-related remuneration has been completely eliminated so that the 

same basic remuneration is paid regardless of the technology and biomass utilized [588]. Only small 

liquid manure plants and waste digestion plants continue to benefit from the original remuneration sys-

                                                      
4 Due to the various system concepts and measurement methods, the exact percentage of required electricity and heat can 

vary considerably [144, 464]. For example, the operation of agitators, feed-in technology and combined heat and power units 

requires between 1.7 % and 23.6 % (operator survey 2015 [464], 7.6 % on average) of the total amount of electricity produced 

[123]. In addition, 5.5 % and 52.6 % (operator survey 2015 [464], 27.2 % on average) of the waste heat is required to heat the 

fermenter [123, 464]. 
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tem set forth in the 2012 version of the EEG. There is also increasing support for processing biogas that 

can be fed into the natural gas grid (biomethane) as well as for participation in direct marketing (market 

and flexibility premium). The current funding conditions are therefore consciously leading to a consider-

able decline in plant construction and are specifically directing biogas technology towards decentralised 

and flexible power generation from biogenic residues and waste materials. The ongoing social and polit-

ical discourse makes it clear that long-term acceptance for the expansion of biogas technology is only 

possible when the individual potentials of the different substrates and wastes, and the distinctive ad-

vantages of their energetic utilisation in biogas plants are considered. 

Usually, the operation of agricultural biogas plants takes into account seasonally fluctuating substrate 

availability coupled with an almost consistent organic loading rate and retention time for constant bio-

gas production. Current studies show that conventional operation considerably underestimates the po-

tential of biogas technology and its possible contribution to the future energy system. This means that, 

with the right system configuration and process management, biogas plants can also be used to cover 

the demand-driven supply of positive or negative control energy [190, 196, 224, 321]. Furthermore, the 

available potential and technical implementation of efficient fermentation of municipal and industrial 

wastes [161, 162, 484], as well as the utilisation of alternative energy crops [146] must be examined 

in more detail. 

Dynamic but reliable plant operation with strongly fluctuating substrate qualities or quantities requires 

analytical methods for characterising substrates and processes, as well as practical methods for effi-

ciency evaluation and process monitoring or control. 

Modelling biogas plants 

For realistic plant design and optimum process control, the knowledge of the individual degradation 

behaviour of different substrates at various process conditions is essential. Dynamic modelling of bio-

gas plants - along with sensor data and laboratory analyses - provides a reliable basis for monitoring or 

prediction of characteristic process parameters and indicators. Thus, simulation results can be used for  

• realistic plant design and efficiency evaluation of the digestion process, 

• detailed state analysis and process optimisation, 

• model-based process control and monitoring in real time, 

• planning or even replacement of cost-intensive and complex test series and 

• research into bio- and physicochemical dependencies and functions [31, 275]. 

In practice, model calculations can therefore serve as decision-making tools for plant operators or can 

be applied as a basis for automated process control and state monitoring for flexible and demand-

oriented biogas production. Accordingly, suitable model approaches are required for dynamic process 

simulation of biogas plants. 

A dynamic model is a simplified representation of a complex system and uses mathematical functions 

to describe time dependencies of characteristic system properties [130, 234]. Based on available 

measurements and existing information on physical and biochemical processes various modelling tech-

niques are available, Figure 6. 
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The development of mechanistic white box models for simulation of anaerobic digestion processes is 

obviously not yet feasible, due to complex and partly unknown or unclear dependencies. As a seemingly 

logical consequence, the biogas process is often regarded as a black box. Even if good simulation re-

sults can be achieved with the help of artificial neural networks [226, 227, 229, 430, 509, 511], the 

application of purely experimental modelling methods only makes sense to a limited degree. Thus, em-

pirical findings and physical dependencies cannot easily be integrated into phenomenological models. 

Moreover, the simulation behaviour depends solely on the informational content of the measured (sen-

sor) data used for modelling (training and/or adaptation) and therefore has a limited transferability to 

other substrates, operating states or process conditions [601]. Hence, the different shades of grey box 

models offer a good compromise between specific theoretical knowledge and experimental research 

possibilities. Whereas dark-grey box models enable the development of important process variables 

using vague linguistic statements [379, 423] and adaptive neuro-fuzzy models [364, 516], light-grey 

box models use linear and non-linear differential equations, which are adapted to respective process 

conditions by suitable parameter estimation procedures. 

 

Figure 6: Characteristic modelling techniques to describe dynamic systems [238] 

A large number of dynamic models for simulation of different process parameters of anaerobic biogas 

production have been developed since the late 1960s, Figure 7. The various model approaches differ 

greatly in the number of modelled state variables and process steps [176, 338]. Simple models are 

typically bound to a specific process state and can only be transferred to different substrates or operat-

ing conditions to a limited degree. Complex models – such as the Anaerobic Digestion Model No. 1 

(ADM1) [33] – are often structurally non-identifiable [125] and cannot yet be utilised as basis for pro-

cess automation, since usually only a fraction of the measurement data required for model adaptation 

is available in necessary quantity and quality [553, 580]. 



  

Introduction 

 

17 

 

Figure 7: Number of publications on anaerobic process modelling per year [32, 37] 

Despite the exiting knowledge and many years of experience in mathematical modelling [32, 39, 176, 

338] and process monitoring [247, 389] of anaerobic digestion, model-based state observers or control 

methods cannot be used as standardised tools in agricultural biogas plants due to complex model 

structures and individual adaptation procedures required for parameter estimation or substrate charac-

terisation. Current investigations in the field of simulating anaerobic digestion of typical energy crops 

and manure [168, 279, 331, 334, 474, 478] usually only apply the established ADM1 and do not offer 

practical approaches for robust application in industrial plant operation. In the context of substrate or 

efficiency evaluation, single-stage model structures and simplified balances enable kinetic evaluation of 

discontinuous fermentation tests [74, 127] or a general mass balancing during steady state plant oper-

ation [298, 556]. However, these specialised model approaches are rarely applied to simulate dynamic 

processes. Thus, a comparative evaluation and development of suitable model structures is still needed 

to enable practice-oriented process simulation in large-scale biogas plants.5 

Model simplification 

Within a doctoral thesis at the University of Rostock, simplified model structures were developed for 

practical process simulation of agricultural biogas plants [555]. To utilize and refine stoichiometric, ki-

netic and physicochemical dependencies of the existing model theory, model development focused on 

the application of ordinary differential equations (ODE) and corresponding light-gray-box models, as 

shown in Figure 6. Thus, the stoichiometric degradation pathways (reactions) and various intermediates 

(state variables) of the established ADM1 were systematically simplified with respect to practical and 

robust application in full-scale operation. Individual model structures were evaluated based on labora-

tory experiments for anaerobic digestion of energy crops, farm manure and industrial residues of agri-

                                                      
5 In principle, various models and simplified simulation methods exist in for automated monitoring and control of anaero-

bic/aerobic wastewater treatment processes [30, 120, 121, 389]. However, due to the typical reference unit of the chemical 

oxygen demand (COD) and the specialised model structures, such models can only be applied to a limited degree for simulat-

ing anaerobic digestion of agricultural substrates and residues (see chapter 3.2.1). 
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cultural origin (grain stillage). Parameter estimation was performed both on the basis of Monte Carlo 

analysis in the entire value range of individual model parameters and by numerical optimization proce-

dures. During discussion of results, stoichiometric model properties of implemented model structures 

(such as the cumulative biomethane potential (BMP) or microbial biomass yields of individual nutrients) 

were compared with established reference values in available literature. Furthermore, simulation re-

sults and estimated model parameters of each laboratory experiment were evaluated in detail. The ef-

fect of characteristic parameters on simulation results as well as significant differences of the applied 

model structures and estimation procedures are presented in conclusion. 

 

  

This DBFZ report on Basics of Anaerobic Digestion – Biochemical Conversion and Process Mod-

elling is a compilation of introductory and methodological chapters of the original manuscript of 

the German doctoral thesis: 

   

Weinrich, S: Praxisnahe Modellierung von Biogasanlagen: Systematische Vereinfa-
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2 Biochemical conversion 

For development of realistic and precise process models, the understanding of the fundamental bio-

chemical conversion processes during anaerobic digestion is essential. In the following chapters, char-

acteristic process phases as well as relevant influencing factors on microbial growth and substrate deg-

radation (such as nutrient supply, temperature, pH value or typical inhibitors) are presented and 

discussed in detail. 

2.1 Characteristic process phases 

During anaerobic digestion, a variety of bacteria and archaea decompose the organic substrate into 

mainly methane and carbon dioxide [51, 178, 477, 569]. The anaerobic degradation process is gener-

ally divided into four characteristic process phases – hydrolysis, acetogenesis, acidogenesis and meth-

anogenesis – which differ with regard to their reaction pathways and metabolites of the microorganisms 

involved, Figure 8. The individual degradation steps take place simultaneously in a continuous single-

stage reactor. This results in narrow limits and high demands on specific environmental and operating 

conditions for the degradation of complex substrates. Therefore, a detailed understanding of the prop-

erties and influencing variables of different degradation pathways is of decisive importance for process 

optimisation or modelling. 

 

Figure 8: Characteristic process phases during anaerobic digestion [33, 192, 472] 

2.1.1 Hydrolysis 

During hydrolysis, bacteria break down high-molecular organic polymers, such as carbohydrates, pro-

teins and fats, into their fundamental (low-molecular) building blocks. Extracellular enzymes (hydrolas-

es) catalyse the hydrolytic cleavage of chemical bonds. Depending on the composition and bioavailabil-

ity of the respective substrate, different proportions of sugars, amino acids, glycerine and long-chain 

fatty acids are produced during hydrolysis [452, 461]. 

  



Biochemical conversion  

 
 

20 

Hydrolysis of carbohydrates 

Carbohydrates include both simple sugars (monosaccharides) and more complex oligo- and polysaccha-

rides, which are mainly formed by the linkage or polycondensation of simple monosaccharides [369]. 

The most common natural carbohydrates consist of long-chain polysaccharides such as cellulose (hem-

icellulose and lignocellulose), pectin and starch [175]. During hydrolysis, these chains are then split into 

their monomeric building blocks, Figure 9. 

 

Figure 9: Hydrolysis of carbohydrates (cellobiose) 

Simple disaccharides, like sucrose or maltose, can be broken down comparatively quickly, whereas the 

hydrolysis of cellulose or pectin is slower [51]. Complex lignocellulosic compounds present in many ag-

ricultural substrates and residues cannot be completely hydrolysed, since lignin cannot be split anaero-

bically [75]. 

Hydrolysis of proteins 

Proteins are long-chain macromolecules formed through the linking of 20 different amino acids. The 

sequence of amino acids determines the structure and properties of the individual protein [369]. During 

hydrolysis, proteolytic enzymes (proteases) split proteins into polypeptides and amino acids [45], Figure 

10. Due to their complex structure, proteins are generally more difficult to hydrolyse than simple carbo-

hydrates [175, 211]. However, the actual decomposition rate depends strongly on the respective struc-

ture and the solubility of the protein as well as the individual pH value present [176]. 

 

Figure 10: Hydrolysis of proteins (dipeptide) 
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Hydrolysis of fats 

Fats and oils are esters of the alcohol glycerol, which are built of long-chain fatty acids (monocarboxylic 

acids). Ninety-eight per cent of all natural fats and oils are mixtures of different triglycerides, whereby 

each of the three hydroxyl groups of glycerol is esterified with one fatty acid [369, 446]. During hydroly-

sis, lipases (esterases) enzymatically split fats into glycerol and the individual long-chain fatty acids 

[415], Figure 11. Consequently, fats can be completely hydrolysed, but mostly only at low decomposi-

tion rates [51]. 

 

Figure 11: Hydrolysis of fats (triglyceride) 

The individual components of the substrates determine not only the distribution of the respective inter-

mediate products, but also the speed of hydrolysis. Dissolved organic compounds, such as those pre-

sent in municipal sewage sludge or pig and cattle manure, can be used directly in the subsequent fer-

mentation process. During degradation of agriculture substrates or biowaste, which contain complex, 

particulate and hard-to-degrade constituents or structural components, hydrolysis most often defines 

the rate-limiting step in the overall digestion process [129, 397, 525, 538]. Furthermore, the rate of 

hydrolysis depends on substrate composition and on the concentration of microbial biomass, which is 

proportional to the production of the catalysing enzymes [188]. Research into the application of specific 

disintegration technologies [88, 208, 291, 485] and the application of hydrolytic enzymes [57, 205, 

280, 414] implies that, substrates and waste materials that were previously difficult to ferment will also 

be able to be utilised by anaerobic digestion in the in the future. 

Due to hydrolytic degradation, the dissolved intermediates can now be absorbed through the cell mem-

branes of the microorganisms and are thus available for intracellular metabolism and subsequent pro-

cess phases of anaerobic degradation [175, 415]. 

2.1.2 Acidogenesis 

During acidogenesis, available hydrolysis products are primarily fermented by various fermentative bac-

teria to produce short-chain organic acids, hydrogen, carbon dioxide, ethanol, ammonia and hydrogen 

sulphide. Degradation through microorganisms occurs along various metabolic pathways and is strongly 

influenced by the respective environmental conditions such as the hydrogen partial pressure and tem-

perature [51, 452]. 
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Acidogenesis of monosaccharides 

Glucose is often used as a reference molecule for the stoichiometric description of the acidogenesis of 

dissolved carbohydrates (monosaccharides) [33, 254, 365, 372]. The energy required for anaerobic 

degradation of glucose is obtained through substrate phosphorylation (glycolysis). Oxidising the sub-

strate and transferring the separated electron to the carrier molecule NAD+ obtains the energy required 

to regenerate ADP to ATP [435]. The catabolism of the fermentation of glucose to acetate, propionate 

and butyrate can be described as shown in Figure 12. 

 

Figure 12: Fermentation of glucose [372, 435] 

Among others, the distribution of fermentation products is influenced by the hydrogen partial pressure 

[76, 372, 521], pH value [151, 517, 610] and temperature [608]. For example, more propionic and 

butyric acid and consequently less acetic acid, hydrogen and carbon dioxide are formed at high than at 

low hydrogen partial pressure [75, 360, 435]. In addition to the degradation pathways described above 

there are other reactions that lead to different intermediates such as ethanol or lactic acid, Table 1. 

Table 1: Stoichiometric degradation pathways during fermentation of glucose [33, 379] 

Acetic acid C6H12O6  +  2 H2O    2 CH3COOH  +  2 CO2  +  4 H2 

Propionic acid C6H12O6  +  2 H2    2 CH3CH2COOH  +  2 H2O 

Acetic | Propionic acid C6H12O6    CH3CH2COOH  +  CH3COOH  +  2 CO2  +  2 H2 

Butyric acid C6H12O6    CH3[CH2]2COOH  +  2 CO2  +  2 H2 

Ethanol C6H12O6    2 CH3CH2OH  +  2 CO2 

Ethanol | Acetic acid C6H12O6  +  H2O    CH3CH2OH  +  CH3COOH  +  2 CO2  +  2 H2 

Lactic acid C6H12O6    2 CH3CH OH COOH 

Lactic acid | Ethanol C6H12O6  +  H2O    CH3CH2OH  +  CH3CH OH COOH  +  2 CO2 
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Acidogenesis of amino acids 

Anaerobic degradation of amino acids takes place either in pairs, as a STICKLAND reaction [506], or indi-

vidually by dehydrating an amino acid using external electron acceptors [433]. Since the combined 

STICKLAND reaction is faster than oxidation of a single amino acid [28], this degradation pathway is often 

used as a theoretical basis for modelling acidogenesis of amino acids [33]. Various short-chain fatty 

acids, carbon dioxide, ammonia, hydrogen and (occasionally) hydrogen sulphide can be produced de-

pending on the concentration and structure of different amino acids [432]. The extent to which external 

electron acceptors (hydrogen-utilizing bacteria) are involved in the degradation of individual amino acids 

still remains unclear.6 

The STICKLAND reaction describes a redox reaction in which oxidation of one amino acid is bound to the 

reduction of another amino acid, so that the different amino acids participate in the reaction either as 

electron donors or acceptors [433]. In several reaction steps, the amino acids are thus degraded 

through deamination and decarboxylation while generating ATP, Figure 13. Carbon dioxide and ammo-

nia are produced during oxidation in addition to a carboxylic acid that has one carbon atom less than 

the original amino acid: alanine  acetate. The amino acid utilising hydrogen is usually reduced to am-

monia and a carboxylic acid of the same chain length: glycine  acetate. 

 

Figure 13: Coupled STICKLAND reaction of alanine and glycine [341] 

  

                                                      
6 In this matter, two studies contradict one another; RAMSAY and PULLAMMANAPPALLIL [433] have found that the methanogenic 

bacteria utilising hydrogen play a major role in the degradation behaviour of the amino acids, while NAGASE and MATSUO [382] 

have found they only have a minor influence. 
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Acidogenesis of long-chain fatty acids 

Long-chain fatty acids are broken down using the process of beta oxidation, which depends on the 

number of carbon atoms and the position or configuration of possible double bonds. Thus, the acido-

genesis of even-chain fatty acids primarily produces acetic acid, whereas odd-chain fatty acids also pro-

duce propionic acid [360, 415]. 

In order to enable microbial degradation of fatty acids, catalytic acyl-CoA synthetases activates the fatty 

acids by forming an energy-rich thioester bond between the carboxyl group of the fatty acid and the co-

enzyme A to form acyl-CoA. During the actual beta oxidation, the activated fatty acids are then reduced 

by two carbon atoms per reaction cycle through oxidation, hydration and thiolysis (cleavage of acetyl-

CoA), Figure 14. In order to completely break down long-chain fatty acids into acetic and propionic acid, 

this cycle often has to be repeated several times [100, 401, 446]. 

 

Figure 14: Beta-oxidation of long-chain fatty acids [100, 378, 483] 
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2.1.3 Acetogenesis 

During acetogenesis, various metabolic products of previous degradation stages are mainly broken 

down into acetic acid (acetate), hydrogen and carbon dioxide (hydrogen carbonate). Corresponding to 

the positive free enthalpy ΔG°', many of the acid-forming reactions are endergonic under standard con-

ditions and therefore do not occur spontaneously, Table 2. In order to shift the state of equilibrium to 

yield exergonic reactions, the resulting hydrogen must be consumed continuously [473]. Acetogenic 

bacteria therefore depend on a close symbiotic relationship with hydrogen-utilising archaea during 

methanogenesis [78, 361, 591]. 

Table 2: Stoichiometry and free enthalpy of relevant degradation pathways during acetogenesis 

Educt Reaction ΔG°' 

Propionate CH3CH2COO
–
  +  3 H2O    CH3COO

–
  +  HCO3

–
  +  H+  +  3 H2 76.5 

Butyrate CH3[CH2]2COO
–
  +  2 H2O    2 CH3COO

–
  +  H+  +  2 H2 48.3 

Valeriate CH3[CH2]3COO
–
  +  2 H2O    CH3COO

–
  +  CH3CH2COO

–
  +  H+  +  2 H2 48.3 

Capronate CH3[CH2]4COO
–
  +  4 H2O    3 CH3COO

–
  +  2 H+  +  4 H2 97.7 

Lactate CH3CH OH COO
–

  +  2 H2O    CH3COO
–
  +  HCO3

–
  +  H+  +  2 H2 -4.0 

Ethanol CH3CH2OH  +  H2O    CH3COO
–
  +  H+  +  2 H2 9.6 

Glycerol C3H8O3  +  2 H2O    CH3COO
–
  +  HCO3

–
  +  2 H+  +  3 H2 -73.1 

Hydrogen utilising reactions 

Hydrogenotrophic methanogenesis 4 H2  +  CO2    CH4  +  2 H2O -130.7 

Homoacetogenesis 4 H2  +  2 CO2    CH3COO
–
  +  H+  +  2 H2O -94.9 

Sulphate reduction 4 H2  +  SO4
2-

  +  H+    HS
–

  +  4 H2O -152.1 

Free enthalpy for standard conditions (pH = 7 and T = 298.15 K) in kJ per reaction, according to [349, 521] and 

ΔG
o
'= ∑ ΔGf

o(Products) - ∑ ΔGf
o(Educts) ± n ΔGf

o
' with n = number of protons. 

For example, hydrogen produced by the oxidation of butyric acid can be used directly for hydrogen-

otrophic methane formation, Figure 15. In order to enable a direct hydrogen exchange (interspecies 

hydrogen transfer) between the microorganisms involved, a small interbacterial distance [61] and a 

narrow range for hydrogen partial pressure [202] are required to create thermodynamically favourable 

conditions for both acid formation and hydrogen-utilising methane formation, Figure 16. 

 

Figure 15: Syntrophic oxidation of butyric acid (interspecies hydrogen transfer) 
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In principle, various reactants are available for synthetic degradation that compete for the available 

hydrogen, Table 2. During homoacetogenesis [117, 390] the available hydrogen can therefore also be 

used to reduce carbon dioxide to acetic acid (acetate). In the overall process, however, this reaction is a 

weak hydrogen competitor [107] and is only able to influence the hydrogen balance under special envi-

ronmental conditions. For example, homoacetogenic bacteria have an energetic advantage over hy-

drogenotrophic methanogens in an acidic environment [418] or at low temperatures [104], so that a 

large part of the available hydrogen is then used for acetate formation. The reduction of sulphate to 

hydrogen sulphide can also lead to a decrease in the available hydrogen. As a result, there may be less 

substrate available for methanogen metabolism, which would result in reduced biogas yields, especially 

at high sulphate concentrations (see chapter 2.2.4). How hydrogen is ultimately used depends strongly 

on the existing microbial community, the substrate properties and the individual process conditions. 

 

Figure 16: Influence of hydrogen partial pressure on the free enthalpy ΔG°' [466] 

2.1.4 Methanogenese 

During methanogenesis, obligate anaerobic bacteria convert acetic acid, hydrogen and carbon dioxide 

to methane, water and carbon dioxide. In principle, there are many formation possibilities. Thus, me-

thane can also be formed through the reduction of carbon dioxide with formate or through the dispro-

portionation of methanol or various methylamines [101]. However, methane is usually produced by 

acetoclastic and hydrogenotrophic methanogenesis, Table 3. 

In natural surroundings, a large proportion of methane is directly produced through cleavage of acetic 

acid [157, 316]. Due to their strong affinity to acetate, acetoclastic methanogens can outcompete hyd-

rogenothrophic methanogens at long retention times and low acetate concentrations, despite their 

slower growth rates [246]. This also corresponds to conventional descriptions in available literature on 

methanogenesis of sewage sludge fermentation. In general, 70 % of the methane is formed by acetic 

acid degradation and only 30 % through methanation of carbon dioxide by hydrogen reduction [192, 

245, 496]. 
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Table 3: Stoichiometry and free enthalpy of relevant degradation pathways during methanogenesis 

Educt Reaction ΔG°' 

Acetate CH3COO
–
  +  2 H2O    CH4  +  HCO3

–
 -31.0 

Hydrogen 4 H2  +  HCO3
–
  +  H+    CH4  +  3 H2O -135.5 

Formate HCOO
–
  +  3 H2  +  H+    CH4  +  2 H2O -134.2 

Methanol CH3OH  +  H2O    CH4  +  H2O -112.5 

Acetate utilising reactions 

Acetat oxidisation CH3COO
–
  +  2 H2O    2 HCO3

–
  +  4 H2  +  H+ 104.5 

Free enthalpy for standard conditions (pH = 7 and T = 298.15 K) in kJ per reaction, according to [349, 521] and 

ΔG
o
'= ∑ ΔGf

o(Products) - ∑ ΔGf
o(Educts) ± n ΔGf

o
'  with  n = number of protons. 

However, under certain environmental conditions, the available acetic acid can also be broken down 

into hydrogen and carbon dioxide (hydrogen carbonate) through acetate oxidation, Table 3. At high or-

ganic acid concentrations [200, 490] or a strong ammonia loads [257, 476, 490, 572] the activity of 

sensitive acetoclastic methanogens is strongly inhibited so that anaerobic degradation inevitably occurs 

via synthrophic acetate oxidation and hydrogenotrophic methane formation. High temperatures pro-

vides acetate oxidation an advantage over direct acetoclastic methanogenesis at low acid concentra-

tions only [6, 606]. Due to the multi-layered dependencies and the complex analytical investigation 

methods used to characterise the various degradation pathways, it has not yet been possible to derive 

specific reference values and universal statements for practical operation. However, current studies 

clearly show that for anaerobic digestion of renewable resources (biomass) with high volumetric loads 

and low residence times, the degradation pathway of acetic acid through acetate oxidation shifts con-

siderably in the direction of hydrogenotrophic methane formation [41, 110, 276, 277, 292, 308, 387, 

436, 468] 

2.2 Microbial influencing variables 

For accurate evaluation, optimisation and modelling of reaction pathways and products of individual 

degradation phases, the understanding of the composition and influencing variables of the microbial 

community is of crucial importance [587]. Numerous publications describe physiological relationships 

(metabolism) and phylogenetic relationships (taxonomy) of microbial communities in anaerobic biogas 

plants. Depending on individual process conditions, a wide range of microorganisms has already been 

identified. Based on the phylogenetic classification of all living organisms, the entire biocenosis can be 

divided into fermentative bacteria and methane-forming archaea. 

Fermentative bacteria 

Various types of facultative and obligate anaerobes are responsible for the different degradation 

processes during hydrolysis, acidogenesis and acetogenesis [178, 475]. Individual species of the 

phylum Firmicutes, Proteobacteria or Bacteroidetes are often detected, Figure 17. Various types 

of Clostridia enable the hydrolysis of substrates that contain cellulose and often include the ma-

jority of bacteria present [276, 292, 295, 475, 587]. 
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Frequently identified classes according to [22, 42, 44, 183, 276, 292, 295, 329, 468, 475, 501, 570, 574, 587, 613] 

Figure 17: Taxonomic classification of known microorganisms during anaerobic digestion[466] 

Methanogenic archaea 

Obligate anaerobic archaea (Euryarchaeota) are methane-forming microorganisms that can de-

grade carbon, methyl or acetate-based substrates to carbon dioxide and methane [341]. In con-

trast to fermentative bacteria, this group of highly specialised methanogens has a limited biodi-

versity [44, 91, 276, 436, 468]. Thus, the known methanogenic archaea are mainly from the 

class of Methanomicrobia and Methanobacteria [574], Figure 17. Furthermore, various studies 

have shown that Methanoculleus (Methanomicrobia, Methanomicriobales) plays a dominant role 

in the methanogenic community of large-scale biogas plants [44, 292, 295, 329, 387, 587]. 

Apart from detecting and analysing single organisms, the majority of species or the functional relation-

ships between the microorganisms involved in the overall process are still unknown and most often 

cannot be assigned to a known taxonomic group [22, 276, 292, 329, 436, 475, 501]. Depending on 

the utilised substrates and specific operating conditions, the ratios of the two domains vary by an aver-

age of 15 – 30 % bacteria and 85 – 70 % archaea [22, 469, 587]. However, since the composition of a 

complex biocenosis also changes continuously during dynamic process operation [110, 156, 308, 468, 

501], there is a limited transferability of individual findings of microbiological investigations to the oper-

ation of agricultural or industrial biogas plants. Nevertheless, process-specific parameters and funda-

mental dependencies of the anaerobic digestion process can be discussed and applied for practical 

modelling techniques, without requiring details on the individual composition of the microbial communi-

ty. 
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2.2.1 Nutrient supply 

Like any living creature, aerobic and anaerobic microorganisms depend on a sufficient and divers sup-

ply of different nutrients [76]. The concentration and bioavailability of the required nutrients thus also 

has a major influence on the degradation behaviour of individual bacteria and archaea involved. A lack 

of nutrients usually leads to reduced microbial growth, low biogas rates and high acid concentrations 

and is therefore – among other factors – often the primary reason for inhibited and unstable process 

conditions [111, 310, 462, 541]. Very undiversified distribution of nutrients has often been observed 

during mono-fermentation of energy crops, such as maize or cereals [1, 420]. Therefore, the addition of 

nutrient-containing co-substrates or supplementary trace elements is recommended to ensure a bal-

anced concentration of individual nutrients to ensure stable process conditions [470, 602]. 

 

Figure 18: Classification of essential nutrients in the periodic table of elements [341, 546] 

The different nutrients are divided into macro- and micronutrients based on their required concentration 

and their elemental importance for the microorganisms, Figure 18. Nutrients that are needed in larger 

quantities are referred to as macronutrients, whereas elements that are only required in small concen-

trations are known as micronutrients or trace elements [341].  

Macronutrients and essential cations/anions  

The various macronutrients and ions are crucially important for microorganisms. They are involved in 

the synthesis of ATP/NADP and important enzymes or form essential components of the cell material, 

Table 4. Due to low growth rates and small biomass yields during anaerobic digestion, the need for 

macronutrients is comparatively low and is often already sufficiently supplied by the added substrate 

[51, 554]. 
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Table 4: Functions and importance of macronutrients during anaerobic digestion 

Macronutrients 

C • Essential component of cell material a,b,c 

• Main energy source of microorganisms b,c 

N • Component of many proteins, nucleic acids and enzymes b,c,d 

P • Synthesis of energy carriers ATP and NADP c,d 

• Component of many nucleic acids, phospholipids and enzymes a,b,c 

S • Component of the amino acids cysteine and methionine a,d 

• Cofactor and component of many enzymes a,b,c 

Cations and Anions 

K • Supports nutrient transport and energy balance b,c 

• Important inorganic cation a,b,c 

Ca • Component of exoenzymes (amylases and proteases) a 

Mg • Cofactor and activator of many enzymes a,c 

• Component of ribosomes, membranes and cell walls a 

Na • Formation of ATP (sodium-potassium pump) c,d 

• Nutrient transport within the cell a,c 

Cl • Important inorganic anion a 

a GOTTSCHALK [185] b KAYHANIAN and RICH [263] c TAKASHIMA et al. [514] d VINTILOIU et al. [541] 

Nevertheless, during unbalanced mono-fermentation of e.g., fodder beets, nutrient deficiency of phos-

phorus and sulphur can strongly influence process stability and gas production [470]. There exist only a 

few studies investigating the optimal distribution of macronutrients in substrates. However, individual 

results of these studies can differ widely, Figure 19. In general, a balanced nutrient ratio of approxi-

mately C:N:P:S = 3000:50:3:1 [467] to 600:15:5:1 [554] should be maintained. 

 

a BAUER et al. [42] b GERARDI [178] c HILLS [217] d KAISER et al. [250] 
e SCHERER [467] f WEILAND [552] g WEILAND [554] 

Figure 19: Reference values for optimal ratio of macronutrients in substrates 

  



  

Biochemical conversion 

 

31 

Micronutrients (trace elements) 

Many micronutrients are involved in the formation and activation of important cofactors and enzymes of 

microorganisms [83, 185, 409, 514, 599]. Furthermore, certain metals, such as iron or manganese, 

serve as electron acceptors in redox reactions or reduce the inhibitory effect on the anaerobic degrada-

tion process by precipitating sulphides [263, 409, 592]. Even if individual elements are only required in 

small quantities, they play a decisive role in the metabolism of the microbial community and thus influ-

ence the biogas process significantly. 

Comparative studies on different anaerobic digestions plants prove that the nutrient concentrations 

vary greatly depending on individual process conditions and applied substrates [314, 326, 462, 541]. 

Generally, higher nutrient concentrations can be expected during fermentation of complex residues like 

food waste and pig or cattle manure than during the mono-fermentation of e.g., maize, grass or beet 

silage [220, 314, 462]. 

Often a lack of individual trace elements of iron, nickel, cobalt, molybdenum, selenium or tungsten is 

reported [27, 142, 242, 310, 330, 420, 541, 607]. In many cases, the addition of the missing nutrients 

resulted in stable plant operation with high gas production rates and low acid concentrations. Excessive 

and unnecessary addition of trace elements to a process that already has high concentration of nutri-

ents can lead to lower growth rates or even inhibit the microorganisms involved [142, 155, 330], Figure 

20. A trace element analysis of the fermentation medium e.g., using the method of OECHSNER et al. 

[407], should be applied to determine the required quantity of trace elements. 

 

Figure 20: Influence of the nutrient concentration on the  microbial growth [353, 409] 

However, despite numerous studies on nutrient supply in the anaerobic digestion process, it is still un-

clear how individual trace elements or complex trace element mixtures precisely influence the activity 

and metabolism of microorganisms. There exist many different opinions about the exact significance 

and optimal dosage of supplementary additives during fermentation of common substrates, Figure 21. 

For most micronutrients, a meaningful concentration range between 0.01 and 10 mg L-1 can be defined. 

Iron is clearly required in larger amounts (up to 200 mg L-1) than other trace elements [341]. 
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a ALTAS [12] b GIKAS [180] [178]c HOBAN and BERG [222] d KLOSS [278] in SCHATTAUER et al. [462] 
e LEBUHN and GRONAUER [309] f LIN and SHEI [325] g LO et al. [330] h POBEHEIM et al. [420] 

i SAHM [452] j SEYFRIED and BODE [488] k TAKASHIMA et al. [514] l YUE et al. [596] 

Figure 21: Reference values for optimal concentrations of trace elements in the digestate 

Currently no general statements about the complex synergistic and antagonistic effects of the different 

nutrients on the divers microbial communities of anaerobic digestion can be made [95]. The optimal 

trace element solution of a certain pure culture can strongly inhibit another species [409]. In some cas-

es adding a single nutrient increases the gas yield, whereas the addition of a complex solution of differ-

ent nutrients does not result in improvement [607]. Other studies show that a diverse distribution and 

combination of different nutrients (trace element mixture) has a better effect on the biogas process 

than adding individual elements, due to synergistic effects [142, 541]. 

Adding trace elements significantly influences the composition of methanogenic archaea, which are 

more sensitive to nutrient deficiency than fermentative bacteria [153]. For example, adding iron, copper 

and nickel increases the concentration of acetoclastic methanogens, so that inhibition of these species 

may also be traced back to nutrient-related growth restrictions [261]. 

Regardless of the overall concentration, the bioavailability of respective trace elements influences the 

nutrient supply of microorganisms and consequently also the anaerobic digestion process [409, 540, 

607]. In principle, trace elements and other heavy metals enter the fermenter via the substrate, materi-

al abrasion or through process additives in bound and often biologically unavailable forms, Figure 22. 

These are first dissolved by biochemical degradation in order to be absorbed by the microorganisms 

involved [42]. The bioavailability of the nutrients depends on the environmental conditions, such as the 
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pH value or redox potential, and precipitation or chelation of metal ions [86, 409]. Thus, a high pH value 

in the presence of free phosphate, sulphide or carbonate promotes the formation of hardly soluble 

compounds, which can only be made available again by removing the complexing agents [42]. Recircu-

lation of digestate often has a positive effect on the nutrient balance, as the retention time of individual 

trace elements is increased [242]. 

 

Figure 22: Supply and bioavailability of trace elements in biogas plants [42] 

Both the high variance in the nutrient concentrations of different fermenter samples and the different 

reference values for optimal nutrient distribution (Figure 21) reflect strong differences in the process 

state of the systems under investigation. Even though there is a repeated emphasis on the positive in-

fluence of various additives on the fermentation and activity of methanogenic microorganisms, the re-

spective effects vary greatly depending on substrate composition, inoculum and operating conditions. 

Since the concentration and availability also changes during operation, no general recommendations 

can be developed. Instead, the individual process conditions and plant concept should determine 

whether and how nutrients should be added – either in the form of trace element mixtures or by adding 

co-substrates that contain required nutrients [111]. 

2.2.2 Temperature 

In addition to nutrient supply, temperature is one of the most important factors influencing the growth 

and activity of the microorganisms involved. As the temperature rises, the chemical and enzymatic reac-

tions within the cell occur at higher speed, so that growth and metabolic processes of the species con-

stantly increase until a maximum growth rate is reached [341]. Above this temperature, certain proteins 

can denature irreversibly and thus severely restrict cell functions until there is final thermal decay, Fig-

ure 23. 
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In general, anaerobic degradation also occurs at higher temperatures with faster growth rates and con-

sequently higher gas production rates and shorter residence times. Based on the operating tempera-

ture most biogas plants can be divided into psychrophilic, mesophilic and thermophilic fermentation 

stages. 

 

Figure 23: Influence of temperature on methanogenic growth rate [341, 529] 

Psychrophilic fermentation (10 – 20 °C) 

High acid concentrations (low pH), poor degradation rates and low gas production were frequently ob-

served during psychrophilic fermentation as a result of low growth rates. Hence, weaker process stabil-

ity and poor biochemical conditions for the anaerobic degradation of different substrates can generally 

be expected at psychrophilic temperatures [10, 193, 459, 529]. 

Mesophilic fermentation (30 – 40 °C) 

Compared to psychrophilic fermentation, mesophilic temperatures achieve better hydrolysability of 

complex substrates [282], faster degradation rates and higher organic loading [348], resulting in high 

gas production rates and higher methane contents [92]. For longer retention times no major differences 

of the gas yield is to be expected in comparison to thermophilic fermentation at higher temperatures 

[177]. Furthermore, the wide diversity of mesophilic microorganisms [91, 486] creates a balanced bio-

cenosis and stable process conditions [477]. Mesophilic fermentation therefore appears to represent a 

good compromise between fast degradation rates, high methane concentrations, good process stability 

and moderate energy consumption. Thus, it is also the conventional operating temperature of biogas 

plants in Germany [143, 144]. 

Thermophilic fermentation (50 – 60 °C) 

In addition to the technological advantages, such as the eradication of pathogenic germs (hygenisation) 

and lower homogenisation times due to low viscosity [328], thermophilic fermentation enables fast deg-

radation and high organic loading rates for short retention times [63, 66, 138, 177, 271, 340, 528, 

539, 612]. Even though there have been individual cases of stable and efficient hyperthermophilic fer-

mentation [7, 528], methanogenic archaea are sensitive to temperatures above 60 °C. Reduced gas 

production, low methane contents and high acid concentrations have frequently been observed for 
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higher temperatures. Therefore, the optimal operating temperature for thermophilic fermentation of 

common substrates is below 60 °C [5, 7, 236, 271, 282, 458, 528, 583]. Increasing hydrolysis rates 

[137] usually result in a higher level of organic intermediates and acids [7, 68, 302], which (in addition 

to a highly specialised microbial community) leads to a more sensitive process stability [271, 272, 539, 

584]. 

Strong fluctuations and quick drops in process temperatures usually lead to increased acid concentra-

tions and greatly reduced biogas rates [5, 62, 92, 99, 138, 305, 406]. However, depending on the du-

ration and degree of temperature change, the process can be stabilised again within a few hours or 

days by adjusting feeding and increasing temperatures back to the original operating temperature. Most 

often this has no lasting impact (long term damage) on the microbial community [5, 62, 92, 99, 138, 

305, 406]. Temperature changes within the temperature limits of the microorganisms involved often 

result in good process stability and only small, isolated increases in organic acids [68, 99]. For example, 

if the temperature is increased very slowly by 6 °C a-1 from 53.9 to 57.28 °C [236], constant process 

parameters and stable plant operation prove good adaptability of individual microorganisms to temper-

ature [92, 236]. 

However, a significant change in temperature is likely to lead to reduced gas production rates and 

strong accumulation of organic acids (especially propionic acid) [68, 99, 327]. In the transition area 

between temperature zones, from 42 to 48 °C, the thermal decay of mesophilic bacteria and the low 

activity of the thermophilic bacteria results in low growth rates of the methanogenic population, Figure 

23.  

It is assumed that during transition, individual mesophilic bacteria do not adapt to higher temperature 

zones [91]. Instead, thermophilic bacterial strains, which are already present in the fermenter during 

mesophilic fermentation, become dominant within the population, triggering a change in species within 

the microbial community [68, 91, 94, 528]. Despite the change in population, the biogas process can 

adapt to a new temperature zone over the long term through an adjustment in feeding [99]. However, 

since reduced biogas production and process stability are expected anyway when there is a strong 

change in temperature, a rapid temperature change (temperature jump) is preferable, as this shortens 

the critical transition time and re-stabilises the process more quickly [68, 328]. 

Generally, there is no optimal temperature for anaerobic digestion of organic substrates and waste 

[328]. Because methanogenic archaea are highly temperature dependent, it is much more important 

that the process remains at a constant temperature level in order to ensure a stable and efficient deg-

radation [92, 539]. Depending on the utilized substrates and the technological framework conditions of 

the overall plant concept [349], both mesophilic and thermophilic fermentation have specific ad-

vantages for their applications, Table 5. In addition to the basic need for hygenisation, the ammonium 

concentration [19, 171, 172] or the self-heating potential [327] of individual substrates also play a de-

cisive role in selecting a suitable operating temperature. Furthermore, thermal pre-treatment [177] or 

temperature adjustment of the secondary digester [59] provides an opportunity to better exploit the gas 

potential of the utilized substrates or to reduce olfactory parameters, such as odour from sulphur [583]. 
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Table 5: Advantages of mesophilic and thermophilic anaerobic digestion [477] 

Mesophilic digestion Thermophilic digestion 

High process stability High reaction rates 

Low heating energy Short retention times 

Low ammonia inhibition Hygienisation 

Low water vapour content in the biogas Low viscosity 

Low carbon dioxide content in the biogas Reduction of sludge volume 

2.2.3 pH value and organic acids  

The pH value during anaerobic fermentation is derived from the reaction of alkaline or acidic metabolic 

products and substrate components [71]. Depending on the strength (dissociation constant) and con-

centration of individual acids and bases, as well as the existing buffer system, the concentration and 

activity of free hydrogen ions and pH value changes. The pH directly influences growth and composition 

of the microbial community [134] and also regulates the activity, stability and solubility of important 

enzymes [93]. A change in pH can influence the morphology and structure of the cell as well as the effi-

ciency of many metabolic functions of substrate and energy conversion [134]. In addition to its direct 

function of regulating metabolism, pH also controls dissociation of important acidic or alkaline interme-

diates and thus influences their inhibitory or stimulating effects on the growth conditions of microorgan-

isms [71]. 

Every organism has a pH range in which growth and metabolism are possible [341]. This means that 

different pH optima can be defined for different acetogenic bacteria. For example, proteins (gelatine) 

are usually degraded in the neutral range around pH ≈ 7 [73], whereas the fermentation of carbohy-

drates (glucose) usually occurs at pH values between 5.8 and 6.2 [610]. The distribution of individual 

intermediate and end products of the biogas process also changes depending on the activity of the mi-

croorganisms and enzymes involved [129, 134, 610]. 

 

a BRAUN [71] b EASTMAN and FERGUSON [129] c EDER and Schulz [131] d KAISER et al. [250] 
e SCHOLWIN et al. [477] f LEMMER and OECHSNER [313] g MUNDRACK and KUNST [378] 

h O’FLAHERTY et al. [405] i SAHM [452] j SPEECE [503] k WEILAND [552] 
l WELLINGER et al. [569] m ZOETEMEYER et al. [610] 

Figure 24: Optimal pH ranges during anaerobic digestion 
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According to Figure 24, two pH ranges are common within a diverse microbial community. While the 

acid-forming bacteria prefer slightly acidic conditions, the optimal pH for methanogens is within the 

neutral range. However, since the acid-forming bacteria are active within a large pH range [320, 505] 

and only the methanogenic archaea are inhibited by a strongly acidic or alkaline medium, a pH in the 

optimal range between 7 and 7.5 [51, 477] often develops automatically in single-stage processes. 

However, if the plant is designed for a two-stage process, the pH range can be adjusted by adding hy-

drochloric acid [248, 603], calcium hydroxide [354] or sodium carbonate [51], thus creating the optimal 

conditions for the respective process phases. Thus, the pH value has been applied as a reference vari-

able (nominal value) in simple control systems in order to guarantee optimum process conditions for 

the microorganisms involved [206]. 

Buffer capacity 

During anaerobic fermentation, various buffer systems are able to counteract a strong and abrupt 

change in pH, Table 6. A strong buffer contains a relatively high concentration of a weak acid and its 

conjugated base, so that the effect of acidic or alkaline substrate components and metabolic products 

is balanced by the reaction of free H+ or OH– ions with the existing base or acid [45, 369]. Within the 

effective pH range of the buffer system, only the dissociation equilibrium of the components involved 

shifts, whereas pH values almost remain the same, Figure 25. 

Table 6: Dissociation equilibrium of effective buffer systems during anaerobic digestion 

Buffer Dissociation equilibrium pKa 

Carbonate buffer [CO2  +  H2O  ⇌  H2CO
3
]  ⇌  H+  +  HCO3

–
 6.35 

 HCO3
–
  ⇌  H+  +  CO3

2-
 10.33 

Ammonium buffer NH3  +  H2O  ⇌  NH4
+  +  OH- 9.25 

Sulphate buffer H2S  ⇌  H+  +  HS
-
 6.99 

 HS
-
  ⇌  H+  +  S

2-
 12.89 

Negative logarithmic dissociation constant pKa at T = 293.15 K according to [417]. 

A sufficient carbonate buffer is crucial for methane fermentation [71, 354]. For nitrogen contents in 

agricultural plants, the ammonium buffer may also have a stabilising effect on the pH value [19, 296, 

569]. In this way, substrates with high and divers nutrient concentration, such as liquid manure [554, 

569, 602] or kitchen waste [118], strengthen the buffering capacity of anaerobic fermentation pro-

cesses. 

In practice, the buffer capacity is often determined as TIC 7 through titration of a digestate sample with 

sulphuric acid [399, 440, 545]. The amount of acid consumed indicates the overall effect of the buffers 

present, which counteracts acidification (titration) up to a pH value of 5.0. Depending on the substrates 

used, the buffer capacity is an important process parameter for assessing a sustainably constant pH 

value, hence ensuring stable plant operation [296, 513]. 

                                                      
7 The original meaning of TIC as total inorganic carbonate is therefore only partially applicable for use in biogas technology, 

since the effect of other buffer systems, such as the ammonium buffer, may also be detected during titration [545]. 
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Figure 25: Characteristic buffer systems during anaerobic digestion 

Organic acids 

Various organic acids, such as acetic, propionic and butyric acids, are important intermediates during 

anaerobic digestion. Ideally, all fatty acids are broken down by acetogenic and methanogenic microor-

ganisms as soon as they are created. Thus, a balanced process usually evinces a low acid concentra-

tion [187, 403, 427]. 

High acid concentration or a strong increase in individual acids is generally a reliable indicator for pro-

cess disturbances [8, 187, 350, 359, 427]. However, it may be difficult to distinguish whether individu-

al acids are causing the disturbance themselves or are merely just the indicator. When there is a strong 

acid load, the resulting pH can lead to an inhibited process state [8, 187, 505, 550]. Furthermore, the 

growth of the affected microorganisms is sometimes directly influenced by substrate or product inhibi-

tion of individual acids, see Section 2.2.4. 

Since there is a direct correlation between process stability and acid concentration or acid distribution 

in the reactor, organic acids provide information about the current process state and degradation be-

haviour [8, 215, 216, 296, 359]. When combined with other influencing variables, such as buffer ca-

pacity or pH, individual acids can be used as important parameters for monitoring anaerobic digestion  
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plants [8, 58, 342, 419, 513]. However, it is still unclear how and which acids should be used for pro-

cess evaluation. Depending on the plant concept and substrates under investigation, there are still 

many different opinions on the significance of individual acids and derived indicators (e.g., acid ratios). 

Total volatile fatty acids (VFA) 

The influence of different volatile organic acids is often measured via the sum parameter VFA us-

ing the titration of a digestate sample up to a pH value of 4.0 [80, 258] or 4.4 [399, 440]. Thus, 

the current value and, most importantly, the progression of the total acid concentration often pro-

vide a first impression of the process state. However, a high acid concentration is not necessarily 

an indicator of an unstable process. In order to estimate the existing acid content as a function of 

the effective buffer, the total volatile fatty acid (VFA) concentration is usually related to the buffer 

capacity (TIC). A critical limit between 0.1 and 0.4 is generally defined for the VFA-TIC ratio [313, 

554, 605]. However, during fermentation of renewable resources, a higher VFA-TIC up to 0.6 has 

been reported during stable process operation [123, 440, 553]. Since the methods used in sam-

ple pre-treatment and manual titration differ widely, the timeframe is a more important factor in 

reliable process monitoring than exceeding fixed thresholds [440, 545]. Generally, the VFA-TIC ra-

tio has already been successfully applied for process monitoring [70] or as a reference variable 

within a control system [362]. 

Propionic acid 

Propionic acid (propionate) is generally considered to be a reliable and sensitive process indicator 

[350, 393, 502, 534]. Often an increase in propionic acid can be observed just before a process 

failure or inhibition. Thus, the content and/or change in propionic acid concentration has been 

used as an indicator for process monitoring and as an early warning signal [60, 393]. However, 

high concentrations of propionic acid can also result from strong glucose degradation, even under 

stable operating conditions, and thus lead to a false indication (false alarm) during process eval-

uation [427]. In order to scale sensitive propionic acid to acetic acid, a propionate-acetate ratio 

greater than 1.4 has been proposed [215] and successfully applied for indicating process inhibi-

tion [216, 345]. Nevertheless, even an acid ratio that is far below 1.4 can trigger a process failure 

[393]. Thus, the ratio of propionate to acetate may be less significant under certain process con-

ditions [8]. 

Butyric acid 

The iso-form of butyric acid (butyrate) is also suitable for process monitoring [214, 216] and the 

ratio of butyrate to iso-butyrate can also be used as process indicator [8]. However, no general 

statements are possible for this parameter as well, due to a lack of literature references.  

Due to their high informative value, organic acids have always been used as a reference variable in var-

ious control systems [206]. For example, the acid concentration in the reactor can be controlled by ad-

justing the substrate feed (dilution rate) using fuzzy control [429] or model-based, adaptive control 

[439]. The progression of acid concentration is also a successful way to optimise and separate hydroly-

sis and methanation in a two-stage fermentation plant concept [522]. However, since the biogas or  
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methane production rate is generally the target value of the process, gas production is a better refer-

ence variable in industrial plants than e.g., propionic or total VFA concentration. Nevertheless, individual 

acids – such as propionic acid – can be used as additional indicators or alarm variables within a control 

or process monitoring system [60]. 

In the past, various indicators and critical concentrations for assessing process stability were developed 

based on various organic acids. Stable operation has also often been observed outside defined limits 

[7, 19, 392] and thus there is no universal method for monitoring anaerobic processes using individual 

organic acids [393]. Nevertheless, the dynamic progression of individual acids serves as the basis for 

reliable process evaluation and is therefore also a crucial element of many established process models. 

2.2.4 Inhibitors 

Inhibitors are substances that have a restraining effect on growth and product formation of the microbi-

al community [95]. Inhibitors can enter the process as harmful substrate components or (depending on 

the specific operating conditions and reaction pathways) can be produced as intermediates during an-

aerobic fermentation. In addition to specific degradation products, antibiotics, disinfectants, herbicides, 

salts and heavy metals can also have an inhibitory effect on the fermentation process [131, 250, 569]. 

The inhibitory effect primarily depends on the concentration of undissociated and/or dissolved sub-

stances, so that even essential nutrients or trace elements — such as nitrogen or sulphur — can inhibit 

the anaerobic digestion process in high concentrations [51, 163, 250, 299, 353, 409], Figure 20. 

There are many mechanisms that strongly influence the activity of cells and enzymes [132], including: 

• Chemical reactions with one or more cellular components 

• Adsorption or complexation with enzymes, coenzymes or substrates  

• Disturbance of important reaction sequences and control functions of the cell 

• Change in physicochemical environmental conditions 

The specific functional relationship is usually determined by the critical concentration of inhibitors at a 

defined level of methanogenic activity (50 %) or by the resulting biogas production during continuous 

steady state operation [288, 296]. 

Available literature includes a wide range of test results and concentration limits that vary strongly as a 

result of complex synergies/antagonisms, adaptation times and complexation of individual inhibitors 

related to operating and environmental conditions [95, 477]. For each application, a detailed process 

analysis must determine whether the concentration of a potential inhibitor should be reduced, for ex-

ample by applying suitable additives, extending adaptation periods, or by specific treatment of the sub-

strate or recirculate [353]. 
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Nitrogen (ammonia) 

Nitrogen is an essential nutrient for microorganisms and is mainly released as ammonium/ammonia 

during hydrolysis and fermentation of substrates that contain proteins. Therefore, fermentation of ani-

mal excrements, biowastes or residues from the food industry typically lead to high nitrogen concentra-

tions in the digester [87, 512]. 

While the ammonium ion NH4
+ is synthesised by most bacteria for nitrogen supply [71], undissociated 

ammonia NH3 inhibits the metabolism and activity of microorganisms [24, 72, 286, 296, 358, 421, 

600]. Ammonia diffuses freely through the cell membrane and can thus lead to a change in the intracel-

lular pH value, a higher energy demand or an inhibition of specific enzymatic reactions in the cell [589]. 

The inhibitory effect mainly affects the sensitive methanogenic archaea [47, 199, 287, 442]. Compara-

tive investigations on the methanogenic community also reveal that high ammonia concentrations 

strongly influences the growth of acetoclastic methanogens [18, 65, 87, 259, 287, 421].8 

 
(a) Temperature dependence of the dissociation equilibri-

um NH3 ⇌ NH4
+ in pH range between 6 and 12 

 
(b) Temperature dependence of the dissociation equilibri-

um NH3 ⇌ NH4
+ in pH range between 6 and 8 

 
(c) Permissible ammonium concentration NH4

+ at two 

different operating temperatures [297] 

 
(d) Ammonia inhibition of relative growth rate during 

acetoclastic methanogenesis [18, 65] 

Figure 26: Influencing factors on the dissociation [417] and inhibitory effect of ammonia 

                                                      
8 Only WIEGANT and ZEEMAN were able to demonstrate a stronger inhibition of hydrogenotrophic methanogens at high ammonia 

concentrations during thermophilic operation [579].  



Biochemical conversion  

 
 

42 

The effective ammonia concentration is a result of the dissociation ratio between ammonium ⇌ ammo-

nia. Thus, the inhibitory effect is strongly influenced by the specific pH value and process temperature 

[417], Figure 26a. In a pH range of 6 to 8, the ammonia concentration and corresponding inhibitory 

effect is stronger at higher temperatures and pH values, Figure 26b. Nevertheless, most of the inorgan-

ic nitrogen in this pH range is present in the salts of the ammonium ion NH4
+

 [71]. Based on the pH val-

ue, a reliable ammonium concentration can thus be defined for mesophilic operation, Figure 26c. Dur-

ing thermophilic operation, the inhibitory effect on the growth and metabolism of acetoclastic 

methanogens is often characterised by distinctive inhibition levels, depending on the concentration of 

ammonia [18, 65, 199, 421], as shown in Figure 26d. 

Considering mesophilic and thermophilic temperatures, there is a variety of critical limits for ammonia 

inhibition on microbial methane production, Figure 27. Individual concentrations sometimes differ 

greatly depending on the applied experimental conditions, substrates, inocula and microbial communi-

ty. Moreover, it is difficult to compare contradictory limits, due to imprecise information on the type or 

strength of inhibition as well as missing information on additional adaptation times. During mesophilic 

operation, a continuous increase in ammonia inhibition can be expected between 20 and 150 mg L-1 

NH3. Even though it is usually assumed that higher temperature leads to higher ammonia load [19, 72, 

199, 203], thermophilic microorganisms appear to be able to tolerate significantly higher ammonia 

concentrations [171, 172]. For thermophilic operation, a concentration range between 200 and 

800 mg L-1 NH3 can be defined as onset of ammonia inhibition, Figure 27. 

 

a ANGELIDAKI and AHRING [18] b ANGELIDAKI and AHRING [19] c DE BAERE et al. [24] d BHATTACHARYA and PARKIN [47] 
e BOARDMAN and MCVEIGH [56] f BORJA [65] g GALLERT und WINTER [172] h GALLERT et al. [171] 

i HASHIMOTO [203] j KOSTER et al. [289] k KOSTER and LETTINGA [287] l MCCARTY and MCKINNEY [358]  
m SEYFRIED and BODE [488] n SOUBES et al. [500] 

Figure 27: Ammonia inhibition of methane formation depending on temperature 

Methanogenic microorganisms can slowly adapt to very high ammonium concentrations and thus raise 

the inhibition threshold [18, 24, 87, 171, 284, 532, 600]. Stable operation at concentrations of up to 

11,831 mg L-1 NH4+ [288] or 1,100 mg L-1 NH3 [199] have been reported. However, it should be noted 

that such high ammonia concentrations – despite stable process conditions – sometimes strongly in-

hibit the process and lead to a considerably lower methane production. 
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Ammonia inhibition can be reduced or controlled based on the shown dependencies. For example, a 

specific reduction of temperature [19, 72] or pH [72, 284, 286, 508] can lead to lower ammonia loads 

and more stable process conditions. The presence of individual metal ions, such as Mg2+, Ca2+ or Na+, 

can also reduce the inhibitory effect of ammonia [64, 358, 504]. In order to adapt the microorganisms 

to high ammonia concentrations in the long term, substrates that contain considerable amounts of ni-

trogen should be added to the process with low organic loading rates, high C:N ratios and long retention 

times [47, 72, 262]. Since temperature and pH value are usually kept constant, a direct adjustment of 

the feed can limit the effects of high ammonia concentrations on the biogas process [171]. 

Sulphur (hydrogen sulphide) 9 

High concentrations of sulphur are primarily found in industrial wastewaters from paper production or 

food processing of molasses, alcohols, citric acids, cooking oils or seafood [315]. Sulphur is a compo-

nent of important enzymes and (in the form of various sulphide compounds) is an essential nutrient for 

growth and activity of the microorganisms [268, 289]. Analyses of pure culture Methanosarcina barkeri 

show that small amounts of sulphide have a positive effect on methane formation during acute nutrient 

or sulphur deficiency [373, 471]. Adding sulphide or sulphide forming microorganisms can reduce the 

availability of various heavy metals (such as cobalt, zinc, nickel or iron) below toxic limits by precipita-

tion as metal sulphides [307]. However, excessive concentrations of sulphur or sulphate can also have 

negative effects on the anaerobic digestion process [136, 319, 351]: 

• Sulphate-reducing bacteria and archaea (desulphurisers) compete with acid- and methane-

forming microorganisms for the same substrates, which can result in the deceleration of in-

dividual degradation phases and the inhibition of methane formation. 

• The reduction of sulphate (desulphurisation) produces sulphide or hydrogen sulphide, which 

has an inhibitory effect on the growth of anaerobic bacteria and archaea. 

• The precipitation of metal ions (metal sulphides) can limit the availability of important trace 

elements and the corresponding microbial activity. 

• A high percentage of hydrogen sulphide in biogas is harmful and can cause corrosion in the 

affected technical units (gas pipeline and combustion engine). 

• High sulphide concentrations in the digestate can severely restrict further utilisation path-

ways (for example application as a fertiliser) due to toxicity and odour problems.  

It is now assumed that competition for available electrons in the substrate is the main cause of process 

inhibition during high sulphate concentrations [352]. This growth-limiting effect is reinforced by the re-

duction of sulphate to sulphide or hydrogen sulphide, which additionally inhibits the growth of both 

methanogenic and sulphate-reducing bacteria, Figure 28. 

                                                      
9 Detailed investigations and comprehensive literature reviews describe the multifaceted influence of various sulphur com-

pounds on the anaerobic degradation process [95, 103, 136, 315, 542]. 
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Figure 28: Influence of sulphate-reducing bacteria on methane formation [537] 

Compared to methanogenic archaea, sulphate-reducing bacteria have a higher diversity of metabolic 

pathways [136] and compete for important intermediates during aceto- and methanogenesis, Table 7. 

When hydrogen, organic acids or alcohols are converted under standard conditions, it can be expected 

that sulphate-reducing bacteria will outperform methanogenic archaea due to improved thermodynamic 

conditions (see free standard enthalpy in Table 2 and Table 3) [201, 319, 351, 585]. 

Table 7: Stoichiometry and free enthalpy of relevant degradation pathways during sulphate reduction 

Educt Reaction ΔG°' 

Hydrogen 4 H2  +  SO4
2-

  +  H+    HS
–

  +  4 H2O -152.1 

Acetate CH3COO
–
  +  SO4

2-
    HS

–

  +  2 HCO3
–
 -47.6 

Propionate CH3CH2COO
–
  +  0.75  SO4

2-
    0.75 HS

–

  +  CH3COO
–
  +  HCO3

–
  +  0.25 H+ -37.6 

Butyrate CH3[CH2]2COO
–
  +  0.5  SO4

2-
    0.5 HS

–

  +  2 CH3COO
–
  +  0.5 H+ -27.8 

Lactate CH3CH OH COO
–

  +  0.5  SO4
2-

    0.5 HS
–

  +  CH3COO
–
  +  HCO3

–
  +  0.5 H+ -80.1 

Ethanol CH3CH2OH  +  0.5  SO4
2-

    0.5 HS
–

  +  CH3COO
–
  +  H2O  +  0.5 H+ -66.4 

Free enthalpy for standard conditions (pH = 7 and T = 298.15 K) in kJ per reaction, according to [136, 315, 521] and 

ΔG
o
'= ∑ ΔGf

o(Products) - ∑ ΔGf
o(Educts) ± n ΔGf

o
'  with  n = number of protons. 

Kinetic investigations of individual bacterial groups also show that various sulphate-reducing bacteria 

have a higher substrate affinity (small KS values) and most often faster growth rates (high μm values), in 

comparison to individual methanogens [48, 201, 294, 443, 481, 595]. Due to better kinetic growth 

conditions (large μm-KS ratios), individual substrates and intermediates are more likely to be degraded 

by sulphate-reducing bacteria at low substrate concentrations. 

It should be noted that competing reactions do not necessarily impair one another and both reaction 

paths can occur alongside at high substrate concentrations. However, as soon as the primary substrate 

is limited, the actual degradation path is determined by the degradation and growth conditions of the 

superior species [48, 294]. During hydrogen utilisation, most of the substrate is degraded by sulphate-

reducing bacteria, so that only a limited amount of hydrogen is available to hydrogenotrophic methano-

gens, which consequently leads to greatly reduced methane yields [11, 77, 201, 404]. Oxidation of pro-

pionic acid is also preferably carried out by sulphate reducers, so that an increased degradation of pro-
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pionic acid has frequently been observed at high sulphate concentrations [201, 405, 524, 543]. How-

ever, despite strong substrate affinities, an advantage of sulphate-reducing over methane-forming mi-

croorganisms has rarely been observed during acetate utilisation [11]. Most often acetate is directly 

degraded by methanogenic archaea [50, 201, 524, 543], due to higher growth rates of individual spe-

cies [595] or the specific experimental conditions and applied reactor systems [404]. 

In accordance with ammonia inhibition or the influence of organic acids, sulphur in its undissociated 

form as hydrogen sulphide H2S acts as an inhibitor, as the uncharged molecule can permeate cell 

membranes more easily [103, 136, 289, 405, 408]. Thus, 50 % inhibition of methanogens is expected 

within a range of approximately 50 to 250 mg L-1 H2S at pH values below 7.6, Figure 29. Microorgan-

isms involved can also adapt to high sulphur concentrations, so that severe growth inhibition may only 

occur at concentrations above 1,000 mg L-1 H2S [237]. However, in an alkaline environment, most of 

the sulphur is present in its dissociated form, Figure 25. Thus, for pH values above 7.6, an overall sul-

phide concentration between 600 and 1,200 mg L-1 is considered to cause considerable process inhibi-

tion [289, 405], Figure 29. 

 

a KARHADKAR et al. [260] b KOSTER et al. [289] c LI et al. [319] d MCCARTNEY und OLESZKIEWICZ [352] 
e O’FLAHERTY et al. [405] f OLESZKIEWICZ et al. [408] g VISSER et al. [544] in LENS et al. [315] 

Figure 29: Hydrogen sulphide and total sulphide inhibition of methane formation 

In general, different methods are available to limit inhibitory sulphur concentrations in the liquid and 

gas phase [131, 240, 425, 569]. In agricultural biogas practice, simple, robust methods of chemical 

and biological desulphurisation have proven to be effective. Thus, hydrogen sulphide is usually convert-

ed to elemental sulphur by injection of air or is bound in sparingly soluble iron sulphides by chemical 

desulphurisation through the addition of iron salts [145, 240]. Depending on the required gas quality, 

more complex and expensive procedures, such as activated carbon desulphurisation or gas scrubbing, 

may also be applied [25, 269]. 
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Organic acids 

The inhibitory effect of high acid concentrations on the anaerobic degradation process is the subject of 

various and sometimes controversial scientific investigations and discussions [296, 359]. The low pH 

value resulting from high acid concentrations is often considered the cause of inhibited process condi-

tions, see Section 2.2.3. However, individual acids can also directly inhibit growth and product for-

mation of the microorganisms involved [4, 350, 359, 370, 609]. The inhibition effect is mainly associ-

ated with the undissociated concentration of organic acids [207]. Thus, strength of inhibition varies 

greatly depending on the specific pH value, Figure 30a. Within a typical pH range between 6 and 8, only 

a fraction (< 10 %) of the total acid concentration is present in its undissociated and thus inhibiting 

form, Figure 30b. 

 
(a) Dissociation equilibrium of different, organic acids in the 

pH range between 2 and 8 

 
(b) Dissociation equilibrium of different, organic acids in the 

pH range between 6 and 8 

 
(c) Characteristic inhibitory concentrations of acetic acid in 

the pH range between 6.5 and 7.5 [297] 

 
(a) Inhibition of undissociated propionic and acetic acid on 

methane formation [297] 

Figure 30: Dissociation equilibrium [283] and inhibitory effects of short-chain organic acids 

Acid-forming bacteria are generally more resistant and can tolerate comparatively more acids before 

product inhibition occurs [505]. Higher propionic acid concentrations have often been shown to inhibit 

methanogens [4, 29, 223, 400]. High concentrations of acetic acid can also have an inhibitory effect on 

the breakdown of propionic and butyric acid [9, 166, 184, 350, 527, 609]. In general, a clear distinc-

tion can be made between product and substrate inhibition of individual organic acids or inhibiting in-
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termediates, Figure 31. Depending of the pH values, critical limits of the total concentration of acetic 

acid can be defined, Figure 30c. The concentration of undissociated acid determines the strength of 

inhibition of the affected microorganisms and resulting methane formation, Figure 30d. Usually, the 

effective concentration for inhibition of methane formation can vary between 1,000 and 3,000 mg L-1 

total acetic acid [9, 350, 550, 552] or 14 and 80 mg L-1 undissociated acid [296, 297, 350]. However, 

some studies also show stable process conditions at much higher acetic acid concentrations of up to 

10,000 mg L-1 [4]. 

 

Figure 31: Product and substrate inhibition (limitation) of organic acids [535] 

Generally, the inhibitory effect increases with the chain lengths of the various organic acids. Thus, even 

low concentrations of specific long-chain fatty acids can strongly inhibit the anaerobic fermentation of 

butyric or propionic acid and methane formation [17, 198, 285, 400, 411, 441].10  

For a specific (unfavourable) combination of different long-chain fatty acids, synergetic effects can fur-

ther enhance inhibition by a single acid [285]. Nowadays, the inhibitory effect of long-chain fatty acids is 

often attributed to the adhesion of individual acids to the cell wall, which influences and limits im-

portant transport and protective functions of the cell membrane [233, 416]. Originally, permanent toxic 

effects and irreversible cell damage of involved acetogenic or methanogenic archaea were assumed 

[17, 441]. Recent studies have shown that inhibition of long-chain fatty acids is reversible and that the 

microbiome regenerates even after high acid loads [416]. 

Suitable adaptation times can also enable the microorganisms involved to adapt to high concentrations 

of long-chain fatty acids [89, 391, 411, 412]. However, it is still unclear whether the adaptation process 

is triggered by a structural population change of the microbial community or by phenotypically adapting 

of the existing population to high acid concentrations (physiological acclimatisation) [411]. 

Based on individual degradation conditions and adaptation processes, the definition of critical acid 

concentrations is therefore only of limited use [8]. Nevertheless, depending on the specific substrate 

composition and operating conditions, different concentration ranges in literature can be applied – at 

least initially – to characterise an individual reactor sample for process evaluation. In principle, fatty 

substrates should be introduced slowly and continuously into the fermentation process to enable both 

adaptation of the microbial community and slow degradation of long-chain fatty acids [89]. Further-

more, high fat concentrations in the substrate can already be reduced during substrate processing by 

an additional fat separator [400]. 

                                                      
10 Due to their strong inhibitory effect on the anaerobic digestion process, long- and medium-chain fatty acids are frequently 

applied for food preservation [249, 285] or as a feed additives in animal breeding to reduce methane formation and green-

house gas emissions in ruminants [54, 124, 339, 498]. 
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3 Process modelling 

With basic understanding of the fundamentals of biochemical conversion during anaerobic digestion, 

available methods for process modelling can be derived. This includes biochemical equations, kinetic 

functions (including inhibitors) and physicochemical dependencies as well as a description of estab-

lished model structures for simulation of anaerobic processes. In addition, available methods for sub-

strate characterization (model input) and numerical parameter estimation are presented. 

3.1 Fundamentals of process modelling 

Based on fundamental biochemical and physical dependencies, modelling of material and mass flows 

offers a range of possibilities to describe influential components and characteristic process phases. The 

simulation of anaerobic processes is typically limited to the modelling of continuous stirred tank reac-

tors (CSTR).11 By neglecting the spatial distribution of individual model components, ordinary first-order 

differential equations can be used for process description [33, 121]. The change of any component 

over time within the system or phase boundary therefore results in 

Change = Input  –  Output + Production  –  Consumption ± Outgassing. 
Derivative  Mass transfer  Biochemical reactions  Phase transition 

For balancing a single fermenter, the characteristic components of the solid-liquid or gas phase is illus-

trate in Figure 32, using the nomenclature of the ADM1 [33]. 

 

Temperature T in °C, pressure p in bar, concentration of soluble and gaseous components S in g L-1, 

concentration of particulate components X in g L-1, volume V in L, volume flow q in L d-1, 

kinetic reaction or transfer rate ρ in g L-1 d-1 and stoichiometric coefficients ν in g g-1 

Figure 32: Characteristic components for mass balancing a single biogas fermenter 

                                                      
11 Depending on the reactor design for stirred vessels, fixed bed, fluidised bed or UASB reactors, there are only few process 

models which describe the spatial derivatives of individual state variables, using partial differential equations (distributed 

parameter systems) for anaerobic technologies [119, 167, 374, 375, 515, 586]. 
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The change of a state variable Si (or Xi) in the solid-liquid phase results from the mass balance of all 

relevant influencing factors, degradation reactions and phase transition processes in 

d(VliqSi)

dt
 =  qin ⋅ Si,in  −  qout ⋅ Si  + Vliq ∑ ρjνij  −  Vliq ⋅ ρT,i

j

 . 

Based on the simplified assumption of a volume-stable reaction with a constant filling level and identi-

cal inflow and outflow (qin = qout = qliq), the time dependence of the reaction volume Vliq is eliminated, 

resulting in Equation 1. In general, direct transition to the gas phase (sublimation) can be ignored (with 

ρT,j = 0) when balancing particulate components Xi, Equation 2. The gaseous state variables are deter-

mined based on Equation 3, presuming that no biochemical reactions and no external inflow of gas 

occur in the headspace. 

 

In addition to mass transport via the system boundary, detailed description of stoichiometric pathways, 

effective reaction kinetics and physicochemical dependencies (dissociation and phase equilibria) are 

core elements of modelling anaerobic processes. 

3.1.1 Reaction equations 

There are numerous of biochemical reaction equations that can be applied to describe various metabol-

ic pathways of anaerobic digestion and enable quantitative calculations of specific intermediates and 

products. In applied research, simple equations have been established to calculate the stoichiometric 

biogas potential of individual substrates or substrate components [235]. According to BUSWELL [84] and 

BOYLE [69] Equation 4 and Equation 5 can be used to calculate fermentation products during complete 

conversion of degradable organic substances. Based on the empirical molecular formula C5H7O2N of 

microbial biomass, the stoichiometry was extended by MCCARTY [357] to include the proportion of mi-

crobial biomass, Equation 6. 

General balancing equations 

Vliq = const. and Vgas = const.  

Solid-liquid phase 

dSi

dt
 =  

qliq

Vliq
⋅ (Si,in − Si)  +  ∑ ρjνij

j

 −  ρT,j Equation 1 

dXi

dt
 =  

qliq

Vliq
⋅ (Xi,in − Xi) + ∑ ρjνij

j

 
Equation 2 

Gas phase 

dSgas,i

dt
 =  −

qgas

Vgas
⋅ Sgas,i  + 

Vliq

Vgas
⋅ ρT,j Equation 3 
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Considering thermodynamic and bioenergetic boundaries, individual stoichiometric equations can also 

be extended to include detailed descriptions of any sub-process and intermediate [355–357]. Thus, 

numerous reaction equations of the ADM1 [33] can be applied to model the most important degrada-

tion phases and to describe individual process conditions by suitable parameterization procedures. 

During practical modelling, a detailed process characterisation should only be conducted on those reac-

tions and intermediates that are available (or can be calculated) using conventional measurement 

methods or which describe a growth-limiting process phase or inhibition. 

Basically, all methods depend on a realistic characterization of the applied substrate mixture using indi-

vidual empirical formulas. To transfer the composition of degradable nutrients (carbohydrates, proteins 

and fats) to the stoichiometric equations, single representative substances or a variety of individual 

constituents of each nutrient are applied. 

With regard to anaerobic digestion of renewable raw materials, detailed reaction equations for the bio-

gas potential of fermentable substrate components of forage and cereal crops have been developed 

based on extensive data collected on the energetic assessment of fodder in animal nutrition [560–

562], which can be used for mass balancing and efficiency evaluation in industrial plant operation 

[556, 559]. However, individual results cannot be applied for a detailed description of individual pro-

cess phases or intermediates. Therefore, the stoichiometric basis for detailed simulation of the agricul-

tural biogas process (including different process phases and intermediates) is still based on established 

process models, such as the ADM1 or preceding models used in waste water technology [176, 338]. 

  

Sum stoichiometry 
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3.1.2 Reaction kinetics and growth inhibition  

In order to characterise the concentration of individual intermediates and products over time, a funda-

mental understanding of typical growth of the involved microorganisms is required. Bacteria usually 

multiply through division, so that the cell population doubles in each generation time (cell division cy-

cle). The cell number of a continuously growing culture is thus exponential in accordance with a geomet-

ric progression of 2n. The typical (idealised) growth curve of a discontinuous culture goes through four 

characteristic phases [165, 341, 366], as illustrated in Figure 33. 

Acceleration phase 

Every bacterial culture needs an initial phase (lag phase) to adapt to specific conditions in a new 

environment. How long it takes to reach the maximum growth rate depends both on the specific 

properties of the culture and on the availability of essential enzymes and nutrients. 

Exponential phase 

If unicellular microorganisms divide at a constant rate (minimum generation time), the cell con-

centration increases exponentially. External factors – such as temperature, pH value or inhibitor 

concentrations – and the genetic properties of the microorganisms themselves can cause a con-

siderable change in the maximum growth rate. 

 

Figure 33: Growth phases of a discontinuous culture [165, 341, 366] 

  



Process modelling  

 
 

52 

Stationary phase 

In a discontinuous culture, growth is limited by the consumption of essential nutrients, a high 

population density or the accumulation of inhibitory metabolic products. Growth processes occa-

sionally still occur, however their increase of cell number is compensated by cells that are already 

decaying (cryptic growth). 

Decay phase 

When all of the medium’s nutrient and energy sources are exhausted cells begin to die. Usually 

the number of living cells also decreases exponentially, but the rate is much slower than in the 

growth phase. 

In a continuous culture, the different life phases occur simultaneously. Therefore, it is necessary to de-

scribe the effective growth of individual species, based on characteristic kinetic parameters in order to 

be able to calculate substrate degradation and product formation of a particular process stage. 

Biochemical reaction kinetics  

For dynamical modelling of biochemical metabolic processes, a wide range of reaction kinetics can be 

applied to calculate the progression of the observed variables [176, 415]. The description of the diverse 

degradation processes involved in enzymatic hydrolysis or decay (lysis) of individual microorganisms is 

usually characterized by simple first-order reaction kinetics.12  Thus, degradation and product formation 

during fermentation of particulate substrates can be directly simulated based on the rate-limiting sub-

strate concentration – regardless of specific biomass growth. 

However, biochemical conversion of dissolved substrate components and intermediates, is often de-

scribed by the metabolism and growth of the microorganisms involved. The specific growth rate of indi-

vidual species is crucial for modelling individual bacterial populations as well as for the resulting sub-

strate degradation and product formation. Based on the specific substrate, product and biomass 

concentration or other biological and physicochemical factors (such as pH value, temperature and vari-

ous inhibitors), numerous growth kinetics were developed for precise depiction of microbial growth be-

haviour [30, 301]. Many of these mathematical correlations are based on empirical (phenomenological) 

observations and do not provide mechanistic causality. A small selection of common kinetics – derived 

from a wide variety of sometimes only slightly varying approaches – has proven to be suitable for practi-

cal applications [121, 176, 415], Table 8. 

Generally, kinetics chosen to characterise microbial growth rates can be divided into linear and sig-

moidal growth functions. The specific growth rate μm is primarily influenced by the concentration of the 

growth-limiting substrate S, Table 8. The established MONOD kinetic [366] also describes biomass 

growth in relation to the respective substrate concentration S, the maximum growth rate μm and half-

saturation constant KS, with μ(S = KS) = 0.5 μm. 

                                                      
12 “The first-order hydrolysis function is an empirical expression that reflects the cumulative effect of all the microscopic pro-

cesses occurring in the digester. (...) A large number of factors affect the rate at which materials can be hydrolysed. Large 

particles with a low surface-to-volume ratio would be hydrolysed more slowly than small particles. Starches, proteins, and cellu-

lose would certainly be degraded at different rates. (...) Thus the overall hydrolysis function represents the sum of the individual 

processes taking place in the digesters.” [129, pp. 361-362] 
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Table 8: Microbial growth kinetics of anaerobic digestion 

Linear growth functions 

GRAU [189] μm ⋅
S

S0
  BLACKMAN [53] 

μm ⋅
S

KS
  S ≤ KS  

μm  S > KS  

Sigmoidal growth functions 

MONOD [363, 

366] 
μm ⋅

S

KS+S
  TESSIER [518] μm ⋅ (1 − e

−
S

KS)  

MOSER [371] μm ⋅
Sn

KS+Sn  CHEN [96] μm ⋅
S

KS⋅(Sin−S)+S
  

CONTOIS [105] μm ⋅
S

B⋅X+S
  HALDANE [13, 197] μm ⋅

S

KS+S+
S2

KI

  

Maximum growth rate in d-1, substrate concentration S in g L-1, inhibition constant KI in g L-1 Half saturation constant KS 

in g L-1, microbial biomass concentration X in g L-1, growth parameter B, initial substrate concentration (t = 0) S0 in g L-1 

and input substrate concentration Sin in g L-1 

This growth kinetic is based on the MICHAELIS-MENTEN law [363] that was used to characterise enzyme-

catalysed reactions. It was transferred by Monod to describe microbial growth by regression of experi-

mental measurements (without causal evidence), Figure 34a. Thus, other sigmoidal kinetics according 

to MOSER [371], TESSIER [518] or CHEN [96] clearly allow a precise representation of empirical depend-

encies as well, Figure 34b. 

However, the different functions are unable to describe known effects such as growth reduction at high 

substrate or biomass concentrations. The HALDANE equation [13, 197] also includes the inhibitory effect 

of high substrate concentrations, whereas CONTOIS [105] limits the growth rate depending on the bio-

mass concentration, Figure 34c and d. To include the influence of additional inhibitors or growth-limiting 

substrates, individual kinetics can be extended by suitable inhibition functions. 

 
(a) Growth progression (cell divisions per hours) of the pure 

culture E. coli depending on the glucose concentration [366] 

 
(b) Qualitative progression of uninhibited growth functions 

(KS = 50 mg L-1, Sin = 2 g L-1 and n = 2) 

Figure 34: Progression of different growth functions of anaerobic digestion (Table 8) 
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(c) Qualitative course of inhibited growth functions 

(KS = 50 mg L-1, KI = 2 g L-1 and X = 300 mg L-1) 

 
(d) Influence of the biomass concentration on the progres-

sion of Contois kinetics (S = 1 g L-1 and B = 0.5 ) 

Figure 34: Progression of different growth functions of anaerobic digestion (Table 8) 

Microbial growth inhibition 

The anaerobic digestion process is influenced by many (and partly still unknown) factors, which may 

also strongly inhibit the growth of microorganisms, Chapter 2.2.4. If inhibition is reflected in specific 

measurements or characteristic process parameters, the effects can also be integrated into available 

growth functions. In addition to the common inhibitors, such as pH, acid or ammonia concentrations, 

the influence of ATP supply [43, 365], the availability of the coenzyme NAD [372] and the inhibition of 

hydrolytic enzyme formation [35] have been modelled in the past. However, even if these possibilities 

are available from a theoretical perspective, the description of such complex interrelationships, using 

available laboratory analysis and sensor data, is only of limited use in full-scale plant operation.13 

In accordance with the development of different growth kinetics, various approaches have been derived 

to characterize inhibition as well [30, 370, 415]. Concerning the modelled effects, the most important 

inhibition functions can be divided into three groups, Table 9. Reversible inhibition originates from en-

zyme kinetics. When applied to microbiological processes, it describes growth inhibition via the influ-

ence of individual elements of the characteristic MONOD kinetic [52, 312]. Competitive inhibition in-

creases the half-saturation constant and thus slows down the attainment of the maximum growth rate, 

whereas uncompetitive inhibition influences substrate concentrations and the corresponding maximum 

growth rate. In the case of the substrate inhibition SI = S, the uncompetitive inhibition corresponds to 

HALDANE kinetics, Table 9. The most common form of reversible inhibition is non-competitive inhibition, 

which affects overall MONOD kinetics and alters both level and slope of the growth function. 

  

                                                      
13 For example, growth inhibition caused by a lack of trace elements can also be implemented in typical process models. How-

ever, due to a lack of available measurements the actual influence is difficult to detect or calibrate. Thus, practical application 

for individual inhibition phenomena is not always guaranteed. 
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Table 9: Inhibition functions of microbial growth of anaerobic digestion 

Reversible inhibition 

Competitive 

[52, 312] 

μ = μm ∙
S

KS ⋅ (1 +
SI
KI

) + S
 

Uncompetitive 

[52, 312] 

μ = μm ∙
S

KS + S ⋅ (1 +
SI
KI

)
 

Non-competitive 

[52, 312] 

μ = μm ∙
S

(KS + S) ⋅ (1 +
SI
KI

)
 

pH inhibition 

Single-sided | version 1 

[33, 445] 
IpH = { 

exp (−3 ⋅ ൬
pH − pHUL

pHUL − pHLL
൰

2

)    pH < pHUL

1                                                      pH ≥ pHUL

 

Single-sided | version 2 

[337] 
IpH = 1 −

KpH
n

KpH
n + pHn

 
KpH =

pHUL+pHLL

2
  

n = pHUL ⋅ pHLL 

Single-sided | version 3 

[445] 
IpH =

KpH
n

KpH
n + 10−pH⋅n

 
KpH = 10−

pHUL+pHLL
2   

n =
3

pHUL−pHLL
  

Double-sided 

[33] 
IpH =

1 + 2 ⋅ 100.5⋅(pHLL−pHUL)

1 + 10(pH−pHUL) + 10(pHLL−pH)
 

Substrate inhibition 

Competitive uptake 

[33] 
μ = μm ∙

S

KS + S
⋅

SI

SI + KI
 

Secondary substrate 

[33] 
μ = μm ∙

S

KS + S
⋅

S

S + SI
 

Growth rate μ in d-1, maximum growth rate μm in d-1, substrate concentration S in g L-1, inhibition constant KI in g L-1, half 

saturation constant KS in g L-1, inhibitor concentration SI in g L-1, lower pH limit pHLL, upper pH limit pHUL and inhibition 

factor IpH 

The influence of the pH value can be described by single-sided or double-sided inhibition, Figure 35. 

Since microbial growth at high pH values is strongly limited by inhibition of ammonia NH3, left-sided 

inhibition towards low pH values has often proven to be sufficient [154], Figure 35a. Individual varia-

tions of single-sided pH inhibition differ only in their specific mathematical formulation and numerical 

applicability [445]. Thus, small functional differences can be ignored from a biochemical point of view. 

Furthermore, the effect of competing or limiting substrates can be integrated into the microbial growth 

functions of individual process models as well, Table 9. 
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(a) Progression of different variations of single-sided pH inhi-

bition (pHLL = 5.0 and pHUL = 7.0) 

 
(b) Progression of double-sided pH inhibition according to [33] 

(pHLL = 6.5 and pHUL = 7.5 ) 

Figure 35: Progression of single- or double-sided pH inhibition of anaerobic digestion (Table 9) 

In combination with typical growth kinetics, individual inhibition functions offer a variety of options to 

influence microbial biomass growth, substrate degradation and biogas formation. Most often it is less 

important which specific mathematical expression is applied and more important which processes are 

affected by growth limitation and how these effects can be described by reasonable choice of parame-

ters. 

3.1.3 Physicochemical reactions 

Modelling of physicochemical processes addresses functional descriptions of non-biological factors and 

dependencies. In various digestion models, the pH value is typically determined based on the dissocia-

tion equilibrium of free ions in the liquid phase. In addition, simulation of phase transition processes 

between the liquid and gas phases are included in many model structures as well. Precipitation reac-

tions in the solid-liquid phase of substrates or additives with a high concentration of free ions can also 

have a considerable impact on the anaerobic degradation processes [33]. 

However, high diversity of potential cations and modelling of corresponding precipitation products - from 

nucleation to crystal growth, agglomeration and ripening - require detailed kinetic and thermodynamic 

considerations [194, 526]. As a result, physicochemical processes between the solid and liquid phases 

are usually neglected in conventional process models. However, as soon as strong precipitants such as 

Mg2+ or Fe2/3+ affect the ion balance, potential precipitation reactions must also be taken into account 

in order to ensure that the pH value and all reaction partners involved are calculated correctly [380, 

381, 530]. 

Dissociation equilibrium and pH value 

The pH value is generally calculated from the ion balance of the characteristic dissociation products of 

organic acids, the carbonate and ammonium buffer, and additional cations or anions, Table 10. De-

pending on the implemented model components, some models may include additional ions such as 

SO4
2-

, Na+ or H2PO4
-
 during ion balancing [20, 536]. For simplified and robust process simulation of  
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agricultural biogas plants, NAUMANN developed a semi-empirical pH model for co-digestion of maize si-

lage and cattle manure [384], Table 10. Depending on the process-specific parameters, the model is 

best used in a pH range between 6 and 8 for the fermentation of similar substrate combinations. 

Table 10: Calculation of the pH value based on ion balancing 

Dissociation equilibrium | Ion balance [33] 

Valerate 

[pKa= 4.84] 
Sva− =

Ka,va ⋅ Sva

Ka,va + SH+
 

Butyrate 

[pKa= 4.82] 
Sbu− =

Ka,bu ⋅ Sbu

Ka,bu + SH+
 

Propionate 

[pKa= 4.87] 
Spro− =

Ka,pro ⋅ Spro

Ka,pro + SH+
 

Acetate 

[pKa= 4.76] 
Sac− =

Ka,ac ⋅ Sac

Ka,ac + SH+
 

Hydrogen carbonate 

[pKa= 6.35] 
Shco3− =

Ka,co2 ⋅ SIC

Ka,co2 + SH+
 

Ammonia 

[pKa= 9.25] 
Snh3 =

Ka,IN ⋅ SIN

Ka,IN + SH+
 

Carbon dioxide Sco2 = SIC − Shco3− Ammonium Snh4+ = SIN − Snh3 

Scat+ + Snh4+ + SH+ − Shco3− − Sac− − Spro− − Sbu− − Sva− −
KW

SH+
− San− = 0 

Semi-empirical pH model [384] 

STca = −Svfa + 2 ⋅ pco2 ⋅ KH,co2 − ൬Ka,ac + √Ka,ac
2 + 4 ⋅ Ka,ac ⋅ Svfa൰ + Sco3,2− 

SH+ +
Ka,co2 ⋅ pco2 ⋅ KH,co2

STca − pco2 ⋅ KH,co2

+
Ka,co2 ⋅ Ka,hco3 ⋅ pco2 ⋅ KH,co2

(STca − pco2 ⋅ KH,co2) ⋅ SH+

= 0 with Svfa = Sac + Spro + Sbu + Sva 

a Dissociation constant pK
a
 in mol L-1 at 293.15 K (20 °C) according to [417] with pK

a
= − log

10
(Ka) and Si in mol L-1.  

b STca as a sum parameter of carbonic acid (H2CO2), hydrogen carbonate (HCO3
- ) and carbonate (CO3

2-). 

c Empirical carbonate concentration S
co3,2

- = 0.177 mol L-1 and pK
a,hco3

 = 10.32 according to [384]. 

Phase transition  

In chemical engineering, the mass transfer between the liquid and gas phases is typically described by 

HENRY’s law [98, 210]. Accordingly, the steady-state concentration of a soluble component in the liquid 

phase is proportional to its partial pressure in the gas phase. In an aqueous and unsaturated solution, 

this linear relationship is defined by the substance-specific and temperature-dependent Henry coeffi-

cient KH according to Equation 7. 

S̅liq,i = KH ⋅ p̅gas,i for  S̅liq,i  and  p̅gas,i  in steady-state conditions Equation 7 

Based on the two-film theory developed by WHITMAN [575] and LEWIS [318], this fundamental relation-

ship can be applied to describe the dynamic transfer rate of volatile intermediates and products via the 

volumetric mass transfer coefficient kLa as illustrated in Equation 8 [33, 139, 510]. 

ρT,j =  kLa ⋅  (Sliq,i − KH ⋅ pgas,i) Equation 8 
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By selecting appropriate parameters from Table 11, Equation 3 and Equation 8 can be applied to simu-

late the progression of the resulting gas production from anaerobic degradation of any model sub-

stance. This primarily involves the characteristic biogas components of methane, carbon dioxide and 

hydrogen. Due to its comparatively good solubility (high KH value), the carbon dioxide content of biogas 

was already determined on the basis of HENRY’s law in the initial models of ANDREWS and GRAEF [15]. For 

simplification, the methane quantity produced is sometimes defined as insoluble and only included as a 

volatile component in the gas phase [46, 164]. 

Table 11: Characteristic HENRY coefficients of anaerobic digestion [460] 

 KH
∘  (298.15 K) ΔH  ΔHR-1  KH

∘  (311.15 K) 

 [mol L-1 bar-1] [J mol-1] [K] [mol L-1 bar-1] 

Hydrogen 0.00077 4 157 500 0.00072 

Methane 0.0014 13,303 1,600 0.0011 

Carbon dioxide 0.035 19,955 2,400 0.025 

Hydrogen sulphide 0.1 16,629 2,000 0.075 

Ammonia 60 34,089 4,100 34 

Acetic acid 4,046 52,381 6,300 1,674 

Calculation of the Henry coefficient KH at a temperature change from 298.15 K (25 °C) to 311.15 K (38 °C) via the 

enthalpy of solution ΔH using the VAN'T HOFF equation according to [33, 460]. 

Some models depict the concentration of hydrogen sulphide or ammonia in the gas phase [21, 164, 

213, 536]. The hydrogen sulphide content of biogas is often monitored during process and quality con-

trol or gas treatment. In consideration of potential inhibition and precipitation, hydrogen sulphide can 

be included as an additional state variable in the liquid and gas phase for anaerobic digestion of sul-

phur containing substrates [152]. However, since ammonia (or acetic acid) are predominantly present 

in a dissolved form (high KH values in Table 11) and can currently only be detected as trace gases using 

complex measurement methods [247, 323, 342], phase transition processes of these intermediates 

are typically disregarded during practical process modelling. If it is possible to continuously analyse 

even low concentrations of highly dissolved or low volatile intermediates in the gas phase, these pro-

cess measurements could also be applied as valuable indicators for model validation and process eval-

uation in the future. 

3.2 Model structures 

Based on the fundamental concepts for numerical description of the anaerobic digestion process, nu-

merous possibilities are available for the selection of a specific model structure and corresponding set 

of parameters. For a systematic comparison of existing models, a basic distinction must be made be-

tween external requirements and internal model properties, Figure 36. While the external requirements 

define the practical context for model application, the internal properties specify the characteristics of 

the resulting model structure. Furthermore, the individual objectives for model application (e.g., for pro-

cess monitoring, optimization or control) have a considerable impact on the selection of a suitable 

model structure. 
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Figure 36: Classification of external requirements and internal model characteristics 

3.2.1 Literature survey 

Since the first model proposed by ANDREWS [14], a large number of dynamic models have been devel-

oped to calculate various parameters of the anaerobic digestion process, Figure 7. From a modelling 

perspective, the different simulation models are often evaluated and categorised by the growth-limiting 

factor or process phase [176, 335, 338]. In practice, however, substrate characterisation – using exist-

ing measurement technologies and cost-intensive analyses – has a decisive influence on the applicabil-

ity and reliability of the applied models. In Figure 37 different model structures are therefore classified 

based on primary substrate characterisation. Whereas early process models merely describe anaerobic 

degradation of a single substrate or a single substrate component, such as acetic acid or glucose, sub-

sequent approaches use a complex substrate mixture in the form of undissolved organic composites or 

individual nutrients to simulate the entire fermentation process. The fundamental stoichiometric degra-

dation pathways of the initial process models are often included in later models as well. Thus, the more 

complex model structures have often emerged from the chronological development of simple process 

models. Various publications sometimes only differ in the investigated substrate types or suggest minor 

changes or extensions to the model structure. As a result, decisive development steps from the first 

models to the ADM1 can ultimately be traced through a limited number of model approaches. 

The first characteristics group of models refers to acetate degradation and includes only the model 

structure developed by ANDREWS [14], Table 12. This specific model describes acetoclastic methane 

formation based on the growth of a single microbial species using HALDANE kinetics and also accounts 

for the dissociation equilibrium between carbon dioxide and hydrogen carbonate at a constant pH val-

ue. The description of phase transition process enables the determination of the carbon dioxide con-

centration in the gas phase. In a later publication by ANDREWS and GRAEF the original model structure is 

extended to include the calculation of varying pH values with the range from 6 to 8 [15]. 

Modelling of monosaccharide or glucose fermentation forms the second group of models, which can be 

divided into two classes, Figure 37. While class A only characterises anaerobic glucose degradation to 

methane using the single intermediate of acetic acid, class B describes the concentration and influence 

of the extended spectrum of short-chain organic acids. The basic stoichiometric degradation pathways 

within each class are mostly identical. Thus, structural differences between individual models are main-

ly caused by the number and combination of the applied kinetic functions (including inhibitors) and the 

calculation of phase or ion equilibria, Table 12. 



Process modelling  

 
 

60 

 

Figure 37: Classification of available process models based on substrate characterisation 

Based on investigations of ANDREWS and GRAEF [15, 16], KLEINSTREUER and POWEIGHA [275] developed 

the first model to simulate glucose fermentation. In addition to simple pH calculations and phase transi-

tion processes of carbon dioxide, the model structure also enables the simulation of growth-specific 

temperature dependencies. The model structure proposed by MOLETTA et al. [365] also includes the 

definition of energetic boundaries during anaerobic glucose degradation and specifically differentiates 

between substrate uptake for maintenance and the actual growth of living microorganisms. KIELY et al. 

[270] enhanced the basic model structure by including ammonia inhibition and a detailed ion balance 

for iterative determination of the pH value. 

Similar differences can be observed in the second class when individual intermediates of glucose fer-

mentation are described. The HILL model [212] depicts the basic kinetic and stoichiometric reaction 

pathways for the formation and degradation of different organic acids and also includes growth inhibi-

tion at high acid concentrations. The model concept of MOSEY [372] focuses on the detailed description 

of kinetic boundaries during anaerobic oxidation of glucose and characterises the growth limiting influ-

ence of the availability of NAD in its oxidised form NAD+ via the hydrogen partial pressure in the gas 

phase. 
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Table 12: Properties of characteristic models for anaerobic digestion of single substrates 
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I. Acetic acid               

ANDREWS 

[15, 16] 
  Ac CH4 

CO2 

 Ac  2 1 ⚫ ⚫ ⚫  mol 

II. Glucose               

A. Glucose (Su  Ac)               

KLEINSTREUER 

[275] 
 Su Ac CH4 

CO2 

 Ac 

Toxic a 

 4 2 ⚫ ⚫ ⚫  mol 

MOLETTA 

[365] 
 Su Ac CH4  Ac  4 2 ⚫ ⚫ ⚫  kg 

KIELY 

[270] 
 Su Ac CH4 

CO2 

 Ac 

NH3 

 4 2 ⚫ ⚫ ⚫  mol 

kg 

A. Glucose (Su  VFA)               

HILL 

[128, 212] 

 Su Bu 

Pro 

Ac 

CH4 

CO2 

H2 

 VFA 

 

 11 5 ⚫ ⚫ ⚫  kg 

MOSEY b 

[372, 428, 451] 

 

 Su Bu 

Pro 

Ac 

CH4 

CO2 

H2 

 pH 

H2
 c 

 10 5 ⚫ ⚫ ⚫  mol 

COSTELLO b 

[108, 109, 264, 444] 

 Su Bu 

La 

Pro 

Ac 

CH4 

CO2 

H2 

 pH 

H2
 c

 

VFA 

 12 6 ⚫ ⚫ ⚫  mol 

KALYUZHNYI 

[254–256] 

 

 Su Et d 

Bu 

Ac 

CH4 

CO2 

H2 

 pH 

H2
 c

 

Et 

VFA 

 10 5 ⚫ ⚫ ⚫  mol 

kg 

a The model includes inhibition of unspecified toxic substances. 

b Subsequent model publications of ROZZI et al. [449], PULLAMMANAPPALLIL et al. [428], RUZICKA [451], KELLER et al. [264] or ROMLI 

et al. [444] also based on the fundamental stoichiometry of MOSEY [372] and characteristic extensions of COSTELLO et al. 

[108]. Thus, these (most often identical) model structures are not presented individually. 

c The partial pressure in the gas phase is used as a measurable indicator for the oxidation state of the coenzyme (redox equiv-

alent) NAD which has a direct influence on the specific reaction rates during glycolysis (EMBDEN-MEYERHOF-PARNAS-Weg) and 

subsequent fermentation. 

d The monohydric alcohol ethanol (Et) is assigned to the group of organic acids as a product of acidogenesis. 

COSTELLO et al. [108] and PULLAMMANAPPALLIL et al. [428] independently extended the model by MOSEY to 

include iterative pH calculation and additional inhibitors. The two model structures differ only in the 

description of the effective dissociation equilibria and the selection of specific inhibition functions of 

individual organic acids. Furthermore, Costello et al. add lactic acid and lactate, as additional interme-

diates of acidogenesis. The model developed by KALYUZHNYI [254] is also based on the investigations of 

MOSEY [372] and additionally describes the specific degradation pathways of alcohol fermentation (eth-

anol fermentation). In addition to a detailed calculation of the pH value, the model also reflects the in-

fluence of various inhibitors [20, 108, 112, 372] on glucose fermentation. 
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In parallel to the simulation of anaerobic fermentation of single model substances, modelling of the 

entire metabolic chain during fermentation of complex substrates evolves. In Figure 37, the first group 

of models characterises the substrate mixture by a single sum parameter for (particulate) organic sub-

strate, while the second group uses individual nutrients of carbohydrates, proteins and lipids for a more 

detailed description of the substrate composition. Bases on the different intermediates, the first group 

can be divided into two classes. Class A only differentiates between dissolved and undissolved organic 

substrate, whereas class B further distinguishes between dissolved monosaccharides, amino acids and 

long-chain fatty acids. Since the models are already applied in wastewater technology and as there is no 

specific empirical formula for the stoichiometric description of complex and diverse substrates, the 

chemical oxygen demand (COD) is often used as the reference unit for substrate characterisation. 

A few years after the model of ANDREWS and GRAEF was first published [15], HILL and BARTH present a 

comprehensive model [213] for simulating the characteristic process phases of fermentation, Table 13. 

The model describes anaerobic degradation of an organic substrate via dissolved monomers and organ-

ic acids to methane. In addition to the iterative determination of the pH value and phase transition pro-

cesses, the model also includes temperature-induced changes in microbial growth rates and HENRY 

coefficients. The models of SMITH et al. [495] and NEGRI et al. [385] are mainly based on the combina-

tion of already published model components and were originally developed to simulate a plug-flow reac-

tor or multi-stage plant concept.14 Both model approaches differentiate between rapidly and slowly de-

gradable substrate components, whereby NEGRI et al. additionally model the hydrolysis rate as a 

function of the available surface of particulate substrate components and the number of hydrolytic en-

zymes. 

Nearly a decade later, BERNARD et al. [46] consciously simplifies existing model structures, to enable the 

development and evaluation of model-based monitoring and control concepts. Therefore, anaerobic 

degradation of organic substrate to biogas is described by a single intermediate of volatile organic acids 

and modelled using a process-specific (empirical) stoichiometry. BERNARD et al. deliberately avoid de-

tailed stoichiometric balancing and simulate the fermentation process by considering only COD and 

mass conservation. In addition to a simplified ion balance, the resulting model structure only contains 

the phase transition processes of carbon dioxide, while methane production is described directly in the 

gas phase due to its comparatively low solubility (see Section 3.1.3). 

Within the second class (B. Monomers in Table 13), both BRYERS [79] and SIEGRIST et al. [491, 492] 

distinguish between simple sugars, amino acids and long-chain fatty acids in dissolved hydrolysis prod-

ucts, to enable a detailed description of propionic and acetic acid. Both model structures are based on 

the degradation pathways of sewage sludge fermentation proposed by GUJER and ZEHNDER [192]. The 

model developed by BRYERS includes algebraic calculations of the pH value and the phase equilibrium 

of carbon dioxide, whereas SIEGRIST et al. additionally consider phase transition processes of all gas 

components as well as other growth-specific inhibitors and temperature dependencies. The compre-

hensive model of VAVILIN et al. [536] applies empirical formulas to characterise the stoichiometric deg-

radation pathways of dissolved monosaccharides, amino acids and long-chain fatty acids.   

                                                      
14 Since the modelling methods used to simulate the specific fermenter and plant configurations are only based on the theory 

of stirred tanks reactors, the model structures described can also be applied to simulate conventional biogas fermenters [376, 

377]. 
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Table 13: Properties of characteristic models for anaerobic digestion of complex substrates 
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I. Composites               

A. Soluble Substrate               

HILL and BARTH 

[204, 213, 494] 

 

xOS sOS VFA CH4 

CO2 

NH3 

 VFA 

NH3 

 5 2 ⚫ ⚫ ⚫  mol 

kg 

SMITH b 

[495] 
xOS sOS VFA CH4 

CO2 

 VFA  6 2 ⚫ ⚫ ⚫  COD 

mol 

NEGRI b 

[376, 377, 385] 
xOS 

sOS 

sOS VFA CH4  pH  7 3 ⚫ ⚫ ⚫  Kg 

BERNARD 

[30, 46] 
OS  VFA CH4 

CO2 

 VFA  2 2 ⚫ ⚫ ⚫  COD 

mol 

B. Monomers               

BRYERS 

[79] 
xOS AS c 

Fa 

Pro 

Ac 

CH4 

CO2 

H2 

   9 3 ⚫ ⚫ ⚫  COD 

mol 

SIEGRIST 

[491, 492] 
xOS Su 

Aa 

Fa 

Pro 

Ac 

CH4 

CO2 

H2 

 pH 

H2 

Ac 

 11 5 ⚫ ⚫ ⚫  COD 

VAVILIN 

[454, 536] 
xOS Su 

Aa 

Fa 

Pro 

Ac 

CH4 

CO2 

H2 

H2S 

NH3 

 pH 

H2 

NH3 

H2S 

Pro 

 15 7 ⚫ ⚫ ⚫  kg 

II. Nutrients               

ANGELIDAKI 

[20, 20, 265, 333] 
Ch 

Pr 

Li 

Su 

Aa 

Fa 

Va 

Bu 

Pro 

Ac 

CH4 

CO2 

H2S 

 pH 

VFA 

Fa 

NH3 

IN 

 18 8 ⚫ ⚫ ⚫  kg 

BATSTONE 

[35, 36] 
Ch 

Pr 

Li 

Su 

Aa 

Fa 

Va 

Bu 

La 

Pro 

Ac 

CH4 

CO2 

H2 

 pH 

H2
 d 

 21 9 ⚫ ⚫ ⚫  mol 

ADM1 e 

[33, 34] 
Ch 

Pr 

Li 

Su 

Aa 

Fa 

 

Va 

Bu 

Pro 

Ac 

CH4 

CO2 

H2 

 pH 

H2 

NH3 

IN 

 19 7 ⚫ ⚫ ⚫  COD 

mol 

a The group of monomers also includes soluble organic substances (sOS), as a collection of individual monomers. 

b The model distinguishes between rapidly and slowly degradable organic substrate components. 

c Dissolved intermediates of amino acids and monosaccharides are summarized in a single component (amino acids and 

simple sugars, AS). 

d Following the model approach of MOSEY [372], BATSTONE et al. [35, 36] also use hydrogen partial pressure to regulate both 

reaction rates and stoichiometric composition of intermediates during acido- and acetogenesis. 

d The ADM1 [33, 34] includes an additional disintegration step (based on first-order kinetics) to depict distribution of particu-

late composites into carbohydrates, proteins and lipids. 
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The model structure contains an extended ion balance, detailed gas composition and various inhibitors 

as well as the competitive reactions of sulphate-reducing bacteria on anaerobic degradation of propion-

ic and acetic acid. Furthermore, it depicts temperature dependencies of individual growth parameters 

and the influence of extracellular enzymes on the hydrolysis rate. 

Process models of the last group (II. Nutrients in Table 13) characterise anaerobic degradation of the 

characteristic nutrients and provide the basis for numerous investigation on modelling anaerobic pro-

cesses over the past decades. Based on the stoichiometry proposed by HILL [212], ANGELIDAKI et al. [18, 

21] develop a first comprehensive model to provide a complete description of carbohydrate, protein 

and lipid fermentation. In addition to the detailed calculation of the pH value, phase transition process-

es and growth-specific temperature dependencies, the model protein (gelatine) also enables the simu-

lation of dissolved and gaseous hydrogen sulphide. Beside numerous inhibition and limiting functions, 

the model also includes inhibition of high acid concentrations on enzymatic hydrolysis (product inhibi-

tion) and the influence of long-chain fatty acids on acidogenesis and acetogenesis (substrate inhibition). 

BATSTONE et al. [35, 36] extend the model structure of MOSEY [372] or COSTELLO et al. [108] by adding 

the anaerobic degradation pathways of proteins and lipids [432]. Following investigations of MOSEY, 

BATSTONE et al. also use the hydrogen partial pressure in the gas phase to regulate both the specific 

reaction rates and the stoichiometric distribution of individual intermediates during of acido- and aceto-

genesis. Furthermore, the model includes a differentiated description of hydrolysis rates based on the 

effective enzyme concentration [232, 239] as well as a charge balancing of dissociated ions to calcu-

late the pH value. To provide a uniform model structure, the ADM1 [33, 34] by the IWA Task Group for 

Mathematical Modelling of Anaerobic Digestion Processes combines established model concepts. With 

numerous scientific applications, the ADM1 defines the standard of anaerobic process modelling until 

today, Figure 7. In addition to the characteristic process phases from hydrolysis and/or disintegration to 

acetoclastic and hydrogenotrophic methanogenesis, the model includes different physicochemical reac-

tions for iterative calculations of the pH value, phase transition processes and temperature dependen-

cies. The detailed model report also offers various options to extend the basic model structure by add-

ing nitrate or sulphate reduction, the inhibition of long-chain fatty acids and additional precipitation 

reactions as well as the stoichiometric degradation pathways of homoacetogenesis, acetate oxidation 

and alternative reaction products from acidogenesis of monosaccharide.  

The available publications on anaerobic process modelling provide a detailed knowledge base for se-

lecting or developing a suitable model structure for a specific simulation task, Figure 36. Individual 

models generally apply MONOD or HALDANE kinetics for the description of microbial growth (and substrate 

degradation). Enzymatic hydrolysis and biomass decay are typically described by first-order kinetics. The 

stoichiometric degradation pathways and characteristic intermediates are also largely identical among 

individual model groups, Figure 37. Due to the representative model substrate (glucose), various deg-

radation mechanisms during fermentation of dissolved carbohydrates are subject of numerous investi-

gations. Anaerobic degradation of proteins and lipids is only described in detail by a few fundamental 

model structures, which sometimes differ greatly in the applied reference substances and composition 

of nutritional groups. Thus, even the ADM1 contains a variable stoichiometry for amino acid degradation 

via coupled STICKLAND reactions [33, 433], which however can only be determined with great effort 

based on the specific amino acid composition of individual proteins. In addition to the selection or iden-

tification of suitable kinetic functions and stoichiometric yield coefficients, available model structures  
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primarily differ in type and number of the depicted inhibitory and physicochemical effects. Therefore, 

simulation results of different models can vary greatly for each process state, depending on the applied 

inhibition functions and temperature dependencies. 

With regard to their practical application, individual models can be characterised by the applied refer-

ence unit. Depending on a mol-, mass- or COD-basis of each model structure, the required unit of indi-

vidual model components can be determined via corresponding conversion factors on the basis of the 

molar mass or COD content of each component [102, 281, 331, 337, 474]. 

3.2.2 Model simplification 

For application on full-scale anaerobic digestion plants WEINRICH [555] proposes a systematic procedure 

for successive model simplification of a mass-based ADM1. Individual model structures greatly differ in 

their number of implemented process phases, characteristic components and required parameters. 

Simplified model variants combine nutrient degradation and biogas formation based on first-order sum 

reactions, whereas complex model structures describe individual degradation pathways and intermedi-

ates during acido- and acetogenesis in detail. In regard to available measurements on agricultural an-

aerobic digestion plants [169], simplified model structures show clear advantages for practical applica-

tion, due to the small number of model parameters required and suitable system characteristics. Thus, 

individual model simplifications can be applied as robust estimators to predict gas production rates for 

plant design, process monitoring and control during full-scale plant operation. Complex model variants 

enable a precise description of characteristic intermediates and allow for a detailed state analysis 

based on microbial growth conditions (including relevant inhibitors). 

 

  

Further details on model development and stoichiometric analysis of different simplification of a 

mass-based ADM1 for process simulation of anaerobic biogas plants are provided in the following 

research paper: 

  

Weinrich, S., Nelles, M. (2021): Systematic simplification of the Anaerobic Diges-

tion Model No. 1 (ADM1) – Model development and stoichiometric analysis. Biore-

source Technology. Vol. 333, 125124. 

https://doi.org/10.1016/j.biortech.2021.125124 

https://doi.org/10.1016/j.biortech.2021.125124
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3.3 Substrate characterisation 

Precise laboratory measurements and sensor data of biogas plants is vital for reliable process analysis 

and also has a decisive influence on model application. Thus, error-free experimental data are required 

for optimal estimates of unknown model parameters and for realistic simulation results of specific pro-

cess characteristics. From model development and experimental design to parameter estimation and 

validation, system theory of dynamic models provides a wide range of effective methods for direct iden-

tification of individual parameters. Figure 38. 

 

Figure 38: General procedure for parameter identification of dynamic models 

Parameter sensitivity on simulation results and parameter estimation can be determined by local or 

global sensitivity analysis [431, 455–457, 523]. Thus, individual methods can be applied for parameter 

selection, optimal experimental design (OED) or further model simplification [23, 218, 219, 426, 465]. 

Considering a specific objective function and measurement accuracy, numerical optimisation proce-

dures enable precise estimation of unknown model parameters [121, 140, 238, 548]. Parameter esti-

mates can be validated based on specific confidence intervals and corresponding model efficiencies. 

According to the original objective for model application, additional changes of the proposed model 

structure (including re-evaluation of the revised model and parameter estimates) may be required. 

Thus, all methods for process simulation of anaerobic digestion rely on the quality of available meas-

urements of the examined laboratory experiment or industrial plant concept. 

Generally, every plant operator can choose from a wide range of measurement methods for evaluation 

of process stability and degradation efficiency during regular plant operation, Table 14. Currently, there 

is no general standard for adequate measurement equipment on agricultural biogas plants. Based on 

general recommendation and depending on plant size, operation mode and substrates used, it is within 

the responsibility of the plant operator to define a suitable measurement scenario for the specific plant 

concept [133, 186, 209, 388]. Many investors avoid suitable measurement equipment for financial 

reasons. 
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Thus, many agricultural biogas plants are often insufficiently equipped with available measurement 

technologies [145, 300, 324, 553]. In addition, there is often a lack of systematic documentation and 

evaluation of acquired measurements, so that valuable information is lost or remains largely unused 

[300, 580]. 

Table 14: Measurement methods and analytical procedures for process monitoring [320, 324] 

Component Measuring methods a Sensor b 

Liquid-solid phase   

Mass of solid substrates Weighing cell  

Volume of liquid substrates Inductive flow measurement  

Total solids  Residue after drying c  

Volatile solids Loss on ignition c  

Nutrient composition Weender or VAN SOEST analysis c  

Total VOA Titration  

Organic Acids GC and HPLC  

VOA/Buffer Titration d  

pH value pH electrode d  

Redox potential Redox electrode  

Ammonium Nitrogen Distillation, photometry  

Digester temperature Temperature sensor  

Elemental composition Elemental analysis (combustion analysis)  

Biogas potential Experimental biogas potential test  

Trace elements IC, AAS, ICP-OES and ICP-MS  

Gas phase   

Biogas flow rate thermal, physical or mechanical techniques e  

Methane content IR spectroscopy, heat tone, FID or GC  

Carbon dioxide content IR spectroscopy or GC  

Hydrogen content electrochemical analysis, heat tone or GC  

Hydrogen sulphide content Electrochemical analysis, UV spectroscopy or GC  

Biogas temperature Temperature sensor  

a Atomic absorption spectrometry (AAS), flame ionisation detector (FID), gas chromatography (GC), high performance 

liquid chromatography (HPLC), ion chromatography (IC), inductively coupled plasma optical emission spectroscopy (ICP-

OES), inductively coupled plasma mass spectrometry (ICP-MS), infrared (IR) und ultraviolet (UV). 

b Online sensor:  available |  generally available, but not state of the art in practice on agricultural biogas plants. 

c Standardised application of near-infrared spectroscopy (NIRS) for chemical characterisation of animal feed. 

d Indirect detection of individual parameters by spectroscopic methods based on process-specific calibrations [342] 

e Thermal techniques: calorimetric flow meter; physical techniques: dynamic pressure sensor or fluidistor oscillator; me-

chanical techniques: drum, bellows or impeller gas meter. 

As a result, many biogas plants are only operated at low organic loading rates or fall victim to process 

failure during engaged operation and long-term overloading. In regard to reliable and flexible energy 

supply through renewable energies, the data acquisition will play a more decisive role in the future 
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[324, 581, 582]. Many characteristic variables and process indicators are still only available on a dis-

continuous basis (offline), Table 14.15 In addition to extensive laboratory analyses, inexpensive screen-

ing tests are also available to the user, for example to obtain initial information on the FOS-TAC ratio 

(titration) or the ammonium nitrogen content (photometry) in the digester. Nevertheless, many meas-

urements are only determined on a monthly basis or in the event of a process failure and therefore, do 

not provide a reliable basis for process monitoring [580]. Furthermore, many agricultural biogas plants 

lack specific information about the exact amount and specific properties of the substrates used [553, 

580], preventing precise process balancing and evaluation. Reliable statements on the concentration, 

activity or composition of the microbial community and the resulting evaluation methods for process 

monitoring are also missing. On the one hand, process modelling has to manage with a limited quantity 

and quality of the available measurements. However, on the other hand it also has to define specific 

requirements for improvement of accuracy, variety and frequency of measured data, which could deci-

sively improve simulation or balancing results. 

3.3.1 Chemical substrate analyses 

As a decisive link between the theoretical model structure and the properties of real substrates, sub-

strate characterisation and resulting model input has a considerable influence on the validity of model 

calculations. It is important to select a suitable measurement method that enables a detailed descrip-

tion of applied substrates. Furthermore, measurement results must be transferred to existing model 

components. Depending on the substrate type and available analytical procedures, there are various 

approaches to assign characteristic measurement results to individual state variables (model compo-

nents) of relevant process models. Examples of established methods based on feed and wastewater 

analysis, parameter identification from experimental batch tests, model interfaces and literature refer-

ences are described below. 

Animal feed analysis 

During fermentation of energy crops and agricultural residues, substrate composition of charac-

teristic nutrients is usually determined by the Weender analysis [160, 273, 322]. By converting 

volatile solids to a corresponding COD equivalent, the input fractionation of carbohydrates, pro-

teins and fats can be calculated for direct application of the original ADM1 [281, 337, 576, 604]. 

The extended feed analysis according to VAN SOEST [531] enables a differentiated description of 

different structural carbohydrates (structural substances such as cellulose, hemicellulose or lig-

nin), which can also be used for detailed input characterisation [336]. 

Parameter identification (batch test) 

The substrate-specific progression of biogas or methane production during discontinuous fermen-

tation in anaerobic batch tests can be described by the superposition of individual kinetics of 

substrate fractions that degrade at different rates, Figure 39. High gas production rates in the 

first hours and days of an experiment are used to identify rapidly degradable substrate compo-

                                                      
15 Bioprocess technology also includes a wide variety of spectroscopic and electrochemical methods [26, 221, 247, 342], 

which can be used for continuous (online) measurement of individual process variables, Table 14. These sensors have been 

used in their initial application to monitor biogas plants in the context of applied research projects. Since these methods are 

often associated with high procurement costs and specific expert knowledge (specialist personnel), they are currently not part 

of the standard repertoire of measurement technologies on agricultural biogas plants [247, 342]. 
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nents (such as dissolved sugars and amino acids), whereas a low gas production rate at the end 

of the experiment provides information on slowly degradable constituents [181, 593]. However, 

the content of organic acids and the composition of individual fractions still need to be deter-

mined by chemical analysis. A reasonable application of this method strongly depends on the 

characteristic gas production curves of individual substrates and the accuracy (and transferabil-

ity) of the applied batch tests. Further investigations also show the potentials (and limitations) of 

simultaneous identification of individual hydrolysis constants and degradable substrate fractions 

based on measured gas production rates during semi-continuous plant operation [40, 230]. 

 

Biogas production rate in relation to the total biogas potential of the substrate 

Figure 39: Contribution of different kinetic fractions to the (relative) biogas production rate 

Wastewater analysis 

Detailed balancing combined with chemical properties of individual model components (elemen-

tary composition, oxidation state and charge) enables derivation of model-specific feed composi-

tions from typical measurements used in wastewater technology [231, 274, 597].16 In addition to 

the share of carbohydrates, proteins and lipids, the empirical sum formula (CaHbOcNd) of the com-

plex substrate [274] or the concentration of simple sugars and short-chain fatty acids in the mod-

el input [597] can be determined as well. This method significantly depends on the selection of 

suitable reference substances, which sometimes differ greatly from the actual substrate composi-

tion and resulting biochemical properties. 

Model interfaces 

In order to simulate entire wastewater treatment plants, suitable interfaces were developed for 

coupling models of individual aerobic and anaerobic process stages [106, 398, 533]. For exam-

ple, the input data required for sewage sludge fermentation (ADM1) can be derived from the sim-

                                                      
16 For example, the organic nitrogen concentration can be used to determine the corresponding protein content in the feed. 

The characteristic oxidation state of tripalmitin (C51H98O6) [274] and the specific phosphorus content of phospholipids 

(C7H11PO8-) [597] allow for the calculation of the lipid fraction. The proportion of carbohydrates can finally be determined by 

subtracting the protein and lipid content from the available organic matter. 
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ulation results of biological wastewater treatment (Activated Sludge Model, ASM) [244, 448, 

598]. However, apart from theoretical model investigations, the fundamental problems with a re-

liable characterization of fermentable substrate components or primary model input of the overall 

plant concept remain unsolved. 

Literature references 

Sometimes missing information on the model input is supplemented by practical reference values 

from available literature [102]. The simulation results more or less reflect the actual condition of 

the plant based on the process conditions and substrates used. Depending on the process condi-

tions and substrates applied, the resulting simulation results more or less reflect the specific 

state of the plant. 

In addition to the characterisation of organic compounds, all methods need to distinguish between fer-

mentable and non-fermentable substrate components. Thus, stoichiometric and kinetic reaction equa-

tions only relate to nutritional components, which are actually degradable under anaerobic conditions. 

Generally, the established division between organic and inorganic dry matter (ash) can be extended by 

the definition of degradable volatile solids (DVS) [558, 559, 563]. For a differentiated model descrip-

tion, the total DVS has to be assigned to individual degradable nutrients of carbohydrates, proteins and 

lipids.  

An initial estimate can be achieved by direct determination of non-degradable nutrient components 

such as lignin. Depending on the substrates applied and available analytical procedures, only the mini-

mum share of non-degradable components (maximum DVS) is measured. Thus, further correction of 

measured nutrient concentrations is often necessary.17 Additionally, the results from discontinuous or 

semi-continuous laboratory experiments can be used to determine degradable substrate components 

by applying suitable balancing and modelling techniques [40, 230]. However, the validity of this ap-

proach is strongly affected by the applied experimental procedures and stoichiometric model assump-

tions. Thus, it can be difficult to determine whether individual substrate components cannot be com-

pletely degraded due to specific operating conditions or the applied model structures, or whether they 

actually reflect non-degradable substances. Furthermore, numerous dependencies between various 

model parameters allow only the definition a reasonable value range of DVS [40]. Due to the small 

number of available measurements (gas volume and gas composition), a detailed and reliable definition 

of degradable nutrient classes is not possible without additional analysis [181]. 

In addition to direct measurement of non-fermentable substances or estimation of degradable sub-

strate components on the basis of experimental data, the results of digestion tests from animal feed 

science can be applied to characterise fermentable nutrient components in renewable raw materials 

[474]. Thus, KEYMER and SCHILCHER [266, 267] use digestibility quotients from the DLG feed values for 

ruminants [235, 304] as a basis for the evaluation of degradable substrate components to determine 

the maximum biogas potential of various agricultural substrates.  

 

                                                      
17 LÜBKEN et al. [337], WICHERN et al. [576] and KOCH et al. [281], for example, only consider the share of non-degradable car-

bohydrates in addition to lignin, whereas the concentration of crude proteins and lipids is defined as being completely fer-

mentable. The content of non-degradable carbohydrates is estimated by means of a mass balance of total VS. 
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However, without additional adjustments direct transformation of individual coefficients from the feed 

value table is neither possible nor expedient for achieving a realistic calculation of the biological fer-

mentability of individual nutrients. According to WEIßBACH, "the primary deficiencies of the DLG feed val-

ue table and its use for this purpose are as follows:  

• The analytical results and digestibility ratios for silage are mainly based on data determined 

without correction of total solids (TS) for volatile matter. [...] Thus, the digestibility for silage is 

generally too low. 

• The data on the lipid content of silage are mainly based on results obtained using an outdated 

method in which some of the fermentation products are mistakenly measured as lipids. There-

fore, the data on the crude lipid content of silage is generally too high.  

• As is customary and useful in animal nutrition, the information on individual degradability quo-

tients only relates to the apparent digestibility. Thus, they are not corrected for metabolic nutri-

ent excretion of the animals and record the biodegradable portion of individual nutrients insuffi-

ciently. A subsequent correction of these data is not possible as the methodology of the 

digestion experiments does not guarantee constant metabolic excretion." [557].  

When the digestibility coefficients are directly applied to determine fermentable substrate components 

in the biogas process, “the apparent digestibility measured in animals is thus wrongly associated with 

the biodegradability of the nutrients [...]. However, animal faeces do not entirely consist of indigestible 

substances of the food consumed, but also contain metabolic nutrients excretions of endogenous 

origin." [558]. A subsequent correction of the apparent digestibility is only possible on the basis of 

standardised digestion experiments, that guarantee an almost constant excretion of metabolic nutrients 

[558, 566]. 

Current evaluations [557, 558] based on extensive test series for energetic feed assessment [567, 

568] fulfil these criteria and thus allow for a differentiated and reliable evaluation of biodegradable 

nutritional components. Considering specific maintenance requirements of animals, the indigestible 

fraction of characteristic crude nutrients is determined in standardized digestibility tests by examining 

the different nutrient concentrations in the feed and excreta, Table 15 [557]. 

The content of indigestible crude proteins and lipids (iXP and iXL) within each substrate type is subject 

to only minor fluctuations. Thus, average values for indigestible substances of these nutrients are ex-

pected for individual substrate groups. The proportion of indigestible crude carbohydrates (iXC) however 

varies widely and is approximated by a suitable regression function for each substrate type, depending 

on the content of crude fibres (XF). In order to enable a universal but reliable estimation of indigestible 

raw carbohydrates, a sufficiently large database with a wide range of digestibility ratios was used. 

For example, the resulting regression function (second degree polynomial function) for different harvest 

products of maize crops is based on 63 digestion experiments, which include whole plant maize silage, 

ear maize, as well as the residual maize plant after cob harvest and maize straw after kernel harvest.  
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Table 15: Estimates of nutrient excretions in the digestion experiment [557] 

 Nutrient excretions of animals in g kg-1 TS 

 iXP 

indigestible 

crude proteins 

 iXL  

indigestible 

crude lipids 

 iXC  

indigestible 

crude carbohydrates 

 Mean s  Mean s  Regression function s 

Grain and grain silages 

Wheat, rye 29 7  6 2  35 + 1.89 · XF 17 

Barley, oats 28 5  6 1  35 + 1.38 · XF 23 

Whole crop maize, maize ear and maize kernels and silages thereof 

Maize 36 4  5 1  35 + 0.47 · XF + 0.00104 · XF2 24 

Whole crop cereal silage 

Rye 36 4  6 1  35 + 0.82 · XF + 0.00022 · XF2 24 

Wheat 37 4  6 1  35 + 0.53 · XF + 0.00102 · XF2 21 

Barley 39 4  6 1  35 + 0.81 · XF + 0.00006 · XF2 23 

Other types of green fodder and silage derived therefrom 

Green rye 40 4  10 2  35 – 0.23 · XF + 0.00230 · XF2 22 

Green oats 39 4  10 2  35 – 0.30 · XF + 0.00279 · XF2 19 

Lucerne 44 5  10 2  35 + 0.41 · XF + 0.00101 · XF2 23 

Grass (intensive use) 46 5  10 2  35 – 0.26 · XF + 0.00300 · XF2 40 

Sugar beet silage derived therefrom 

Sugar beet 28 -  6 -  35 – 0.70 · XF  - 

For calculation of the true digestibility within the evaluated digestion experiments [567, 568], average 

nutrient excretions of endogenous origin were determined according to Equation 9. 

eXC = 35 g kg-1 TS Carbohydrates of endogenous origin Equation 9a 

eXP = 20 g kg-1 TS Proteins of endogenous origin Equation 9b 

eXL = 5 g kg-1 TS Lipids of endogenous origin Equation 9c 

Based on the concentration of individual crude nutrients, degradable substrate components can be 

obtained from the indigestible and endogenous excretions as described in Equation 10. 

DXC = XC − iXC + eXC Degradable carbohydrates Equation 10a 

DXP = XP − iXP + eXP Degradable proteins Equation 10b 

DXL = XL − iXL + eXL Degradable lipids Equation 10c 

The sum or combination of individual equations for determination of degradable nutrients corresponds 

to practical estimation procedures for total DVS according to WEIßBACH [558, 559, 563]. 
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Figure 40: Regression function for indigestible crude carbohydrates of maize silage [557] 

No comparable measurements and corresponding estimation formulas are available to assess digesti-

ble substrate components of animal excrements. However, WEIßBACH [564, 565] applies specific di-

gestibility quotients of pig and poultry manure to calculate the biogas potential of typical farm manures. 

Due to standardised test conditions, the corresponding results can also be used to calculate the con-

tent of fermentable nutrients. Thus, the indigestible nutrient concentration of comparable excrements 

or manures can be determined as a function of substrate-specific digestibility quotients (DQ) according 

to Equation 11. 

iXC = XC ⋅ (1 − DQXC) Indigestible crude carbohydrates Equation 11a 

iXP = XP ⋅ (1 − DQXP) Indigestible crude proteins Equation 11b 

iXL = XL ⋅ (1 − DQXL) Indigestible crude lipids Equation 11c 

Equation 9 and Equation 10 are then used to calculate the fermentable nutrients while accounting for 

metabolic nutrient excretions of endogenous origin. 

An additional reference value can be derived on the basis of practical data of typical gas yields of farm 

manures [557]. If the stoichiometric biogas formation potential of forage and cereal crops is also ap-

plied to manure and dung, the degradation quotients of animal excrements can be calculated by divid-

ing the substrate-specific biogas yield of the KTBL reference values [123, 447] by the stoichiometric 

biogas potential of 809 L kg-1 DVS [562], Table 16. Following the usual description of WEIßBACH, it is 

thus possible to define corresponding estimation equations for calculation to total share of DVS. How-

ever, this approach does not allow a differentiated description of individual nutrients. Furthermore, the 

resulting fermentation quotients are strongly dependent on the informative value of the utilized refer-

ence values.  
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Table 16: KTBL reference values and degradability quotients of farm manure 

 KTBL reference values [123, 447]  

 TS VS XA Biogas Methane DQ a Regression function 

 [% FM] [% TS] [g kg-1 TS] [L kg-1VS] [%] [%] [g kg-1 TS] 

Cattle manure b 10 80 200 380 55 47 DVS = 0.47 · (1000 – XA) 

Pig manure 6 80 200 420 60 52 DVS = 0.52 · (1000 – XA) 

Solid cattle manure c 25 85 150 450 55 56 DVS = 0.56 · (1000 – XA) 

Solid Poultry manure c 40 75 250 500 55 62 DVS = 0.62 · (1000 – XA) 

a Calculation of the degradability quotient by dividing the specific biogas yield in L kg-1 VS of the KTBL reference values by the 

stoichiometric biogas potential of forage and cereal crops with 809 L kg-1 DVS according to WEIßBACH [557, 562]. 

b Cattle manure, including feed remains. 

c Solid cattle and poultry manure, depending on the straw to feces ratio. 

3.4 Parameter estimation 

To depict individual process behaviour and simulate the characteristic progression of individual meas-

urements, various methods exist for numerical estimation of unknown model parameters [121, 238, 

548]. However, the methodical approach and functional components for identification of parametric 

models are similar for many established procedures, Figure 41. 

 

process input u(t), disturbance n(t), process output y(t), model output ŷ(t) 

output error e(t), objective function value Jobj and model parameters pi 

Figure 41: General block diagram for estimation of unknown model parameters [434, 548] 

In each iteration step, the deviation e(t) between measurements y(t) and corresponding simulation re-

sults y(t) is determined and summarised in the objective function value Jopt. Based on numerical optimi-

sation procedures, individual model parameters θ are then iteratively adjusted to achieve optimal objec-

tive values (minimum error). In addition to the selection of variable model parameters and reasonable 

parameter boundaries, suitable objective functions and powerful optimization procedures are required 

for assessment and effective minimization of the resulting model deviation. 
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3.4.1 Parameter selection 

Depending on available measurements, individual model parameters must be selected for numerical 

estimation and precise description of characteristic processes and variables. In system theory, influen-

tial parameters can be identified and applied for process simulation using local or global sensitivity 

analysis [431, 455–457, 523] 

During application of the ADM1, local sensitivity indices have been calculated directly via partial deriva-

tives of state equations [102] or percentage changes [182, 311, 577, 578]. To consider the influence 

of parameter combinations and dependencies between different model parameters, global sensitivity 

analysis in the entire value range of unknown model parameters is required. In anaerobic digestion 

process simulation, there are only a few studies [126, 499], that evaluate the global parameter influ-

ence using typical indices, such as first-order effects according to SOBOL [497], total effects according to 

HOMMA and SALTELLI [228] or elementary effects according to MORRIS [368]. 

A literature survey, consisting of 30 investigation on the application of the ADM1 clearly shows that re-

gardless of substrate types and sensitivity indices, the same parameter groups are usually selected for 

parameter estimation, Table 17. In general, first-order reaction constants of disintegration or hydrolysis 

as well as the kinetic parameters of acetogenesis and acteoclastic methanogenesis play a decisive role 

in the description of individual process behaviour. Characteristic parameters of acidogenesis as well as 

inhibition constants of nitrogen limitation, hydrogen inhibition or specific limits of the pH function are 

rarely changed. 

Frequency of a parameter change within the sample (Table 17, footnote b) largely corresponds to the 

overall parameter sensitivity proposed by BATSTONE et al. [33]. Only the limits of pH inhibition rarely 

change despite their occasionally high sensitivity. Furthermore, kinetic parameters of acetogenesis are 

often identified during parameter estimation, although their influence on the simulation results (accord-

ing to BATSTONE et al.) is comparatively low. Considering specific measurements, parameters that tend 

to be modified during model application are those that also have a large impact on simulation results. 

However, influential model parameters are not necessarily identical to a reasonable selection of varia-

ble parameters. Thus, identifiability of individual model parameters must be verified (considering the 

specific model structure, available measurements and reasonable parameter limits). Even under ideal 

process conditions, individual parameters cannot be clearly identified on the basis of the applied model 

structure (structural identifiability). In addition, identifiability is complicated by experimental procedures 

and various measurement uncertainties (practical identifiability) [121, 547]. 

 



Process modelling  

 
 

76 

Table 17: Parameter selection for parameter estimation during application of the ADM1 
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Assuming ideal process behaviour and error-free measurements, individual state variables and model 

parameters of the ADM1 are structurally identifiable [306]. However, detailed investigations by NIHTILÄ 

and VIRKKUNEN [394], HOLMBERG [225] and DOCHAIN et al. [122] prove that even estimation of character-

istic growth parameters of original MONOD kinetic – with typical measurement uncertainties and without 

information on the microbial biomass concentration of the involved species – is not unique or only pos-

sible in combination of individual parameters. Based on a small quantity of (partially erroneous) meas-

urements and various state variables and model parameters, considerable uncertainties are to be ex-

pected during parameter estimation of established anaerobic process models [125]. 

In spite of these weaknesses, typical MONOD kinetics are still suitable for functional description of mi-

crobial growth behaviour and precise simulation of characteristic measurements. However, the limits of 

parameter identifiability of anaerobic systems must be taken into account, especially when evaluating 

and interpreting specific parameter values [225]. Thus, measurement uncertainties can be applied to 

determine specific confidence regions of individual model parameters [40, 102, 251]. Furthermore, 

Monte Carlo analysis can provide a graphical representation of the objective function, which can be 

utilized for evaluation and quality assessment of individual parameter estimates [182].  

3.4.2 Objective function 

The choice of a suitable objective function and corresponding optimization algorithm significantly af-

fects the outcome of numerical estimation of unknown model parameters [125]. A variety of mathemat-

ical functions and quality criteria can be applied for assessment and minimization of the remaining 

model deviation (with respect to available measurements), Table 18. 

Table 18: Objective function and quality criteria for assessment of model deviation a 

Objective function [125, 367] 

Mean absolute error 
(MAE) 

1

n
⋅ ∑|yi − ŷi|

n

i=1

 Root mean squared error 
(RMSE) 

√
1

n
⋅ ∑(yi − ŷi)

2

n

i=1

 

Mean squared error 
(MSE) 

1

n
⋅ ∑(yi − ŷi)

2

n

i=1

 
Mean logarithmic 

squared error (MLSE) 

1

n
⋅ ∑(ln(yi) − ln(ŷi))

2
n

i=1

 

Model efficiency [293, 367, 383] 

NASH-SUTCLIFFE-

efficiency (NSE) 
1 −

∑ (yi − ŷi)
2n

i=1

∑ (yi − y̅i)
2n

i=1

 
Extended NASH-SUTCLIFFE-

efficiency b (eNSE) 
1 −

∑ |yi − ŷi|
n
i=1

∑ |yi − y̅i|
n
i=1

 

a Measurements (y
i
), model output (ŷ

i
), arithmetic mean of measurements (y̅

i
) and number of measurements (n). 

b Extension of the original NASH-SUTCLIFFE-Efficiency by absolute differences, according to KOCH et al. [281]. 
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During simulation of anaerobic digestion processes, the objective function value is typically determined 

using (mean) squared differences between individual measurements and the corresponding simulation 

results [40, 127, 135, 170, 182, 251, 333, 343, 402]. To reduce the considerable influence of extreme 

values or outliers on the objective function, squared errors (MSE and RMSE) are typically replaced by 

absolute differences (MAE) [49, 281, 293, 367] or the natural logarithm of individual measurements 

and corresponding simulation results (MLSE) [38, 195, 576]. 

Furthermore, the calculation of the objective function can be extended to include parameter-specific 

and time-dependent weights [125]. Thus, information on measurement uncertainty of individual pro-

cess variables - for example in the form of the inverse covariance matrix of measurement error (Maxi-

mum Likelihood) - can be included in the parameter estimation procedure [238, 548, 594]. However, 

reliable information on measurement uncertainty (and in particular on sampling errors) is rarely availa-

ble in research or practise. Furthermore, the influence of different value ranges of individual measure-

ments (e.g., during multi-objective optimization) can be addressed by multiplication of additional 

weights with the squared (or mean) error of each process variable [159, 332].  

In addition to typical objective functions, there are numerous quality criteria to assess model efficiency, 

quantify model precision or compare different simulations results with a given set of measurements 

[241, 293, 367]. Two variations of the NASH-SUTCLIFFE-efficiency (NSE) have been used during applica-

tion of the ADM1, Table 18. Based on the similar formula for the coefficient of determination R2, the 

original NSE [293, 367, 383] provides an established indicator for evaluation and assessment of simu-

lation results.18 Thus, a NSE of 1 indicates a perfect description of experimental results by the applied 

process model. A NSE of 0 shows, that the simulation results contain as much information as the 

arithmetic mean of individual measurements. For negative NSE values, the arithmetic mean of available 

measurements is more suitable for (statistical) process description than the corresponding simulation 

results. By using squared errors, extreme values and outliers can have a considerable influence on the 

original NSE. Therefore, Koch et al. [281] replaced squared differences in the original NSE with absolute 

differences, as shown in Table 18. 

3.4.3 Optimisation procedure 

Based on the applied objection function, unknown model parameter are iteratively determined within 

reasonable boundaries using suitable optimisation procedures. In general, numerical optimisation algo-

rithms can be divided into local and global procedures [396, 413, 438]. Whereas traditional methods 

determine the local optimum close to corresponding initial values, global procedures enable identifica-

tion of the overall optimum in the entire value range of the applied objective function. Furthermore, a 

clear distinction is made between gradient-based and gradient-free algorithms, Table 19. 

  

                                                      
18 The coefficient of determination R2 characterizes the quality of a linear approximation and is delimited to linear regression 

models with resulting function values between 0 and 1 [150]. The Nash-Sutcliffe-efficiency (NSE) can be applied for any (non-

linear) regression or simulation model and also enables negative function values. 
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Table 19: Classification of typical optimization procedures in anaerobic process modelling a,b 

 Local optimization procedures Global optimization procedures 

g
ra

d
ie

n
t-

b
a

s
e

d
 

• NEWTON algorithm  

• GAUSS-NEWTON algorithm  

• LEVENBERG-MARQUARDT- algorithm 
GARCIA-OCHOA [174], DEVECI [116], MARTIN [347], 

LOKSHINA [332], SIMEONOV [493] 

 

• Sequential quadratic programming 
Sales-Cruz [453], Aceves-Lara [2] 

 

g
ra

d
ie

n
t-

fr
e

e
 • Secant method 

CESUR [90], CHEN [97], KALFAS [251] 
• Genetic algorithms 

JEONG [243], ABU QDAIS [430], WICHERN [576] 

• Simplex algorithm 
MÖSCHE [370], SIMEONOV [493], RUEL [450], HAAG 

[195], GUISASOLA [191], LOPEZ [333], BIERNACKI [49], 

MAIRET [343] 

• Particle Swarm Optimization 
Wolf [590]  

• Simulated Annealing 
Haag [195] 

a Extended summary and application examples for parameter estimation in anaerobic process modelling based on the com-

prehensive literature review of Donso-Bravo et al. [125]. 

b A detailed description of characteristic optimization procedures can be obtained from available literature [179, 395, 396, 

413, 438].  

Thus, Newton's algorithm requires additional information on the first and second derivative to deter-

mine the search direction to the minimum of the objective function [115]. Since it is sometimes difficult 

to calculate the second derivative (HESSE matrix) in case of nonlinear functional behaviour, the Gauss-

Newton algorithm applies the JACOBI matrix to replace the objective function with a linear approximation. 

This guarantees an explicit and unique solution for each iteration step. The LEVENBERG-MARQUARDT algo-

rithm combines the advantages of both procedures by an additional step-size or damping factor (regu-

larization). The resulting optimisation procedure is more robust than the GAUSS-NEWTON algorithm and 

yet converges better than NEWTON’S original method [317, 346].19 

In addition to the LEVENBERG-MARQUARD algorithm, gradient-free procedures such as the secant or sim-

plex method are often used for parameters estimation during simulation of anaerobic processes [125]. 

Global optimisation procedures generally do not depend on computation of gradients and are rather 

based on biological or physical phenomena in order to identify the best possible parameter combination 

in the entire value range of the objective function [179, 395, 422]. For parameter optimisation and 

model application in anaerobic digestion, individual studies examine the application of nature-inspired 

optimisation techniques based on evolutionary and/or genetic algorithms, as well as at individual be-

haviour in animal swarm formation or technical cooling processes, Table 19. 

Within the scope of his doctoral thesis, Weinrich [555] applied an extended variant of the gradient-free 

simplex method of NELDER and MEAD [303, 386, 549] for parameter estimation. For the number n of 

unkown model parameters, a simplex consists of n + 1 points. Thus, in a two-dimensional parameter 

space, a simplex is characterized by three points (triangle), Figure 42. 

                                                      
19 Traditional methods such as the GAUSS-NEWTON or LEVENBERG-MARQUART algorithm have been developed for solving non-linear 

compensation problems and to minimise squared errors. Thus, the objective function and the corresponding optimisation 

algorithm cannot be selected separately for these procedures [396, 413, 438]. 
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(a) Transformation of a simplex by reflection, expansion, contraction and compression [303] 

 
(c) Sequential parameter adjustment (optimization) 

using a fixed simplex [549] 

 
(d) Sequential parameter adjustment (optimization) 

using a variable simplex [549] 

Figure 42: Basic principle of the gradient-free simplex algorithm 

Starting from an initial simplex, a new parameter point (or vector) is calculated based on fundamental 

transformation through reflection, expansion, contraction and compression, Figure 42a. This guaran-

tees a better functional value in the vicinity of the original simplex and in turn defines a new simplex for 

the next iteration step [549]. By sequentially combining the resulting simplexes, the local minimum (ob-

jective value) can be determined iteratively. Optimisation can be performed with continuous reflection 

of a fixed simplex (Figure 42b) or by application of available operators (Figure 42a) to modify shape of a 

variable simplex (Figure 42c) during each iteration [549].20 Compared to the LEVENBERG-MARQUARDT 

method, the simplex algorithm generally converges more slowly, due to missing gradients. However, this 

rather simple and gradient-free optimisation procedure reacts less sensitively to local minima and thus 

enables robust estimation of unknown model parameters [125]. 

                                                      
20 In the example in Figure 42, both methods reach the minimum functional value through 15 parameter combinations. How-

ever, for optimization with a fixed simplex, additional iteration steps are required to circle the objective value and guarantee a 

local minimum (steps 16 to 19). 
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Further details on the application of the presented estimation procedures for process simulation 

of continuous anaerobic experiments are provided in the following research paper: 

  

Weinrich, S., Mauky, E., Schmidt, T., Krebs, C., Liebetrau, J., Nelles, M. (2021): Sys-

tematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) – Laboratory 

experiments and model application. Bioresource Technology. Vol. 333, 125104. 

https://doi.org/10.1016/j.biortech.2021.125104 

https://doi.org/10.1016/j.biortech.2021.125104
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