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Abstract: The mining, processing, and use of finite natural resources is associated 

with significant interventions in the natural environment. Thus, these and other 

negative consequences make it necessary to reduce resource consumption. An 

important field of action is the more efficient use of biogenic residues as secondary 

raw materials. However, high water containing biomasses are still a problem since they 

need an energy- and cost-intensive pre-treatment for many conversion processes, 

which can make their use uneconomical. Hydrothermal processes (HTP) seem to be 

promising, since they require an aqueous environment for optimal processing anyway. 

Although technological progress within the industry is recognisable, however, to date 

HTP have not been established in industrial continuous operation in Germany. The 

core of this work is identifying reasons for this sluggish development and deriving 

appropriate recommendations for action.  

Based on the hypothesis that HTP can contribute to the efficient utilisation of biogenic 

residues in the future, potentials and obstacles for the development of HTP in Germany 

are identified using a literature review, expert survey, expert workshop, and SWOT 

analysis. To estimate the future potential of HTP in a systematic and structured way, a 

multi-criteria technology assessment approach is developed based on the results. To 

this end, assessment criteria for HTP are derived, weighted by expert judgment, and 

integrated into a transparent and structured procedure. In addition, mainly based on a 

Delphi-survey key factors of HTP development by 2030 in Germany are identified and 

three development alternatives for HTP in Germany by 2030 are derived. Using a 

system analysis and a comparative multi-criteria analysis at plant level, these scenarios 

are analysed for their possible future impact. 

Based on this methodology, the work shows that the production costs for the end 

products, the energy efficiency of the process, and the proportion of recycled 

phosphorus are of high relevance to the techno-economic success of HTP compared to 

reference systems, and they are therefore of high importance for its future development 
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on the plant level. In addition, further key factors for the future development of HTP 

in Germany on the system level are found to be mainly in the political-legal (e.g. legal 

waste status of products from HTP) and techno-economic (e.g. cost-effective process 

water treatment) areas. According to this, important fields of action are the 

identification and use of cost reduction potentials (e.g. heat waste use), the 

development of system integrated decentralised plant concepts with integrated nutrient 

recycling (e.g. phosphorus), and the development of cost-effective ways to treat 

process water. System integration, cost-effective process water treatment, and nutrient 

recycling are all closely linked to production costs, investment costs, and potential 

revenues, and can contribute to improved process economics. For these areas, there is 

promising future potential to achieve higher competitiveness with reference 

technologies that are currently more economical. 
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1 Introduction and background 

The extraction, utilisation, and processing of finite natural resources is associated with 

significant interventions in the natural environment and leads to emissions in water, 

soil, and air (UBA 2016). To reduce these negative consequences to an ecologically 

and socially acceptable level, various strategies are pursued for a more 

environmentally friendly and efficient use of natural resources in production and 

consumption. For example, in the Roadmap to a Resource Efficient Europe, the 

European Commission focuses on increasing resource productivity, decoupling 

economic growth from resource use, strengthening competitiveness, and promoting 

security of supply (European Commission 2011, Staffas et al. 2013). In the current 

version of the German Resource Efficiency Program, the German government aims to 

secure a sustainable supply of raw materials, increasing resource efficiency in 

production, designing resources and products more efficiently, and developing a 

resource-efficient circular economy (BMUB 2016).  

The circular economy has a key role in reducing the consumption of natural resources. 

In such an economy, the prevention of waste (longevity, reuse, ease of repair, etc.) 

comes first, followed by recycling and energetic use (EPRS 2017). Besides the circular 

economy, the bio-based economy focuses on the production of renewable biological 

resources and their conversion into food and feed, bio-based products, and bioenergy 

(European Commission 2012). The bio-based economy considers the transformation 

to a circular economy as an essential guiding principle. In terms of resource efficiency 

and sustainability, it aims at the gradual exploitation and multiple uses of natural 

resources (BMEL 2014). Hence, measures of the circular and the bio-based economy 

are closely related and should support each other in achieving their goals. 

The efficient usage of biogenic residues and waste (e.g. landscaping materials, sewage 

sludge, and animal excreta) is an area in which the potential synergies between the two 

strategies are particularly clear. In terms of the circular economy, waste is reduced and 

converted into potentially valuable products. Material applications in particular are 

currently of high interest, as materials for various fields of applications can be 

produced (e.g. chemicals, construction materials) (UBA 2014). This results in the 

substitution of products based on finite, mostly fossil resources (such as petroleum) 

with bio-based products, which also supports the principles of the bio-based economy. 

In Germany, the energetic use of biogenic residues has predominated in recent years. 

For example, in biogas plants, these residues are anaerobically converted to biogas, 

which is then burned in combined heat and power plants to produce energy and heat. 

Functionalised compounds such as carbohydrates, proteins, and fatty acids are lost. In 
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addition, around half of the carbon in the residues is lost as carbon dioxide (Pleissner 

2017). Thus, such a use of biogenic residues is not completely efficient, not because 

of the technical process, but because the material potential of the biomass is not used.  

What is needed are processes that make the best possible use of both the material and 

energy potential of the available residues. First, this makes a valuable contribution to 

climate protection, as climate-neutral fuels produced with residues can replace fossil 

fuels. Second, the principles of the circular and the bio-based economy are also 

considered, as the material use is the primary application. Another advantage of the 

efficient use of biogenic residues and waste is that there is no competition to food and 

feed production (e.g. land competitions), as it is not a crop biomass (Baur 2010). 

Finally, residual materials have to be disposed of anyway, so a more efficient treatment 

can save disposal costs and therefore also represents an interesting option from an 

economic perspective (Mühlenhoff 2013).  

The potential for not or inefficiently used biogenic residues is likely high. A recent 

study estimates a technical potential in Germany of 98.4 million tons of dry matter. Of 

this dry matter, 67.4 million tons are in material or energetic use, while about 30.9 

million tons either are not used or have unknown usage (Brosowski et al. 2016). The 

technical potential includes that part of the theoretically available quantity that can be 

sustainably taken from a given area or region, under consideration of a number of 

limiting factors (i.e. availability, ecological limits, technical constraints, temporal and 

spatial imbalances between supply and demand) (Kaltschmitt et al. 2009). Because the 

data for some material flows is insufficient, the actual potential may be even higher. 

In addition, if currently inefficiently used residues (e.g. energy use without prior 

material use) are considered, the biomass potential for correspondingly more efficient 

utilisation paths is presumably also higher (Brosowski et al. 2016). 

Due to the situation described above, treatment processes which make the best possible 

use of the potential of biogenic residues as sources of chemicals, materials, and energy 

are currently being investigated (cf. Fricke et al. 2012, Mahro & Timm 2007). The 

options include various biological (e.g. fermentation) and chemical (e.g. pyrolysis) 

processes that can be specifically optimised to treat residuals (e.g. Guven et al. 2019, 

Tröger et al. 2013). However, a problem area is high water-containing substrates. 

Apart from anaerobic digestion, they are not suitable for any of the processes discussed 

without pre-treatment, since a certain dry fraction in the substrate is often necessary 

for optimal processing (e.g. for fast pyrolysis, gasification) (Crocker 2010, IEA 

Bioenergy 2011). If this is not the case, costly drying processes are necessary, which 

can significantly reduce the energy efficiency of the overall process and therefore 

make it uneconomical (Haque & Somerville 2013, Doering & Larson 2012).  

https://www.researchgate.net/publication/286371156_Biomassepotenziale_von_Rest-_und_Abfallstoffen_Status_quo_in_Deutschland
https://www.researchgate.net/publication/286371156_Biomassepotenziale_von_Rest-_und_Abfallstoffen_Status_quo_in_Deutschland
https://pubs.rsc.org/en/Content/ArticleLanding/2014/CS/c3cs60293a#!divAbstract
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To avoid costly and energy-intensive substrate pre-treatments, hydrothermal processes 

(HTP) are currently discussed as suitable conversion options. Since they require an 

aqueous environment for optimal processing, they seem to be well suited for wet 

substrates (Tekin et al. 2014). The following sections introduce hydrothermal 

processes and present the state of the art and knowledge on HTP worldwide and 

particularly in Germany. Based on this, knowledge gaps and the corresponding 

objectives of this work are subsequently explained.  
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Hydrothermal processes: Introduction and status quo 

In the technical context, the term ‘hydrothermal’ refers to a reaction with hot, liquid 

water under pressure (Vogel 2016). In 1913, Friedrich Bergius first described how 

such a reaction can be used to produce a coal-like product from biomass by imitating 

the geological process of brown coal formation within a few hours (Bergius 1913). 

Following this pioneering work, in 1971 the first fundamental study on the use of 

hydrothermal conditions for biomass liquefaction was published at the Pacific 

Northwest National Laboratories (PNNL) in the United States (Appell et al. 1971). 

Shortly thereafter, the first technical concepts for hydrothermal biomass gasification 

were developed (Modell et al. 1978, Modell 1982). At the beginning of the 

millennium, the hydrothermal reaction principles were rediscovered (e.g. Cui et al. 

2006) and since then have been constantly evolving. Today, the following types of 

HTP are distinguished as presented in Table 1.1. 

Table 1.1. Types of hydrothermal processes (own composition) 

Processing type Description 

Hydrothermal 

carbonisation (HTC) 

Hydrothermal carbonisation usually takes place at temperatures of 160 to 

250 °C, a pressure of 10 to 30 bar, and reaction times of about 1 to a 

maximum of 72 hours (Kruse et al. 2013, Vogel 2016). High-temperature 

HTC uses temperatures of 300 to 800 °C (Hu et al. 2010). The process 

mimics the natural process of brown coal formation and produces a 

corresponding coal-like end product. 

Hydrothermal 

liquefaction (HTL) 

Hydrothermal liquefaction produces biogenic oils at predominantly 

subcritical conditions. This corresponds to temperatures of 220 to 400 °C, 

pressure conditions of 40 to 200 bar, and reaction times of a few minutes 

(Peterson et al. 2008). At temperatures above 250 °C, higher energy yields 

can be achieved in the product. The addition of catalysts is more common 

for this type of process than for HTC. Mostly alkaline salts are applied 

(Huber et al. 2006).    

Hydrothermal 

gasification (HTG) 

Hydrothermal gasification is divided into three sub-reactions. Subcritical 

HTG takes place at 280 to 374 °C with a maximum pressure of 221 bar and 

mainly produces methane. Supercritical HTG takes place from 375 to 800 

°C at a pressure of more than 221 bar. In particular, hydrogen is generated 

in this reaction. Both reactions only need a few seconds. A special case is 

the aqueous phase reforming (APR), which takes place at 200-280 °C, a 

pressure of 15-50 bar, and a few hours’ residence time. Here, mainly 

hydrogen, carbon dioxide, and alkane are generated (Hrnčič et al. 2016). An 

addition of catalysts is recommended. In most cases, metal catalysts and 

alkaline salts are used (Kruse 2009). 

For all three conversion paths, the molecular size of the substrates is reduced and / or 

the oxygen content in the final products is minimised. As a result of the lower oxygen 

content, the calorific value of the products increases, which is why they are generally 

well suited as climate-neutral fuels. In addition, the proportion of water in the end 

products is strongly reduced compared to the substrate, which also increases the energy 

content in the product (Vogel 2016).  
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Water is the central reaction medium of all processes described. At high temperatures 

and pressures, called subcritical or supercritical conditions, highly compressed water 

acts as a solvent, reactant, and catalyst (Hrnčič et al. 2016). As shown in Table 1.1., 

especially pressure, temperature, and reaction time determine which product 

composition results from hydrothermal conversion. Even if the desired main product 

is solid, liquid, or gaseous, all three states of aggregation are produced in different 

compositions depending on the type of process. Furthermore, the compositions differ 

considerably based on the specific process conditions and the substrate used (cf. 

Román et al. 2018, Salimi et al. 2016,  Onwudili et al. 2013). 

Depending on the type of process, the respective main product in the largest mass 

fractions and the best possible product properties (e.g. high energy and carbon 

contents) is always desired, which is why researchers are currently intensively 

analysing corresponding optimal process conditions (Zhao et al. 2018). Furthermore, 

the optimal handling of by-products is also under investigation. One focus is the 

efficient treatment of the liquid phase from HTC. This process water is particularly 

heavily loaded with organic compounds and reaches for the sum parameter of all, 

under certain conditions oxidisable substances (COD), a very high value of up to 

68,500 milligrams of oxygen per litre (Vogel 2016). A direct inlet of the process water 

is therefore not permitted, so it must be cleaned. Various options are currently being 

discussed in this regard, such as process water cycles, wet oxidation, and membrane 

processes (e.g. Makälä et al. 2018, Stutzenstein et al. 2018, Kühni et al. 2015). By 

contrast, the undesirable by-products from the HTL and HTG are much less burdened, 

which is why they are currently not the focus of research. 

In addition to the potentially high energy contents, the energy efficiency, and the 

simple processing concepts with fast reaction times, the potentially high carbon 

contents of HTP products are also advantageous. For example, the carbon efficiency – 

that is, the proportion of carbon in the substrate that is later included in the usable end 

product – is high. For instance, HTC achieves values of up to 95% (Vogel 2016), while 

the value of anaerobic conversion to biogas is only 50%. As a result, much less carbon 

dioxide is emitted during the hydrothermal conversion of biomass, which contributes 

to a more favourable greenhouse gas balance (MPIKG 2006).  

Due to the high carbon content in the product, the solid product of HTC is also 

potentially useful as soil conditioner and for carbon sequestration (Breulmann & 

Fühner 2014). However, the application options for products made by HTP are even 

more diverse, as shown in Table 1.2. 
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Table 1.2. Fields of application for products from hydrothermal conversion (own composition) 

HTP products Fields of application References 

Main product from HTC  

Solid coal-like product • Energy production 

• Energy storage 

• Carbon storage 

• Soil conditioning and fertilisation 

• Carbon additives 

• Concrete additive 

• Road coverings 

• Application as adsorbent 

• Application as catalyst 

• Application as electrode material 

• Refining to platform materials (e.g. 

furfural, hydroxymethylfurfural 

(HMF)) 

Román et al. 2018;  Wu et 

al. 2017; Rillig 2010; Aida 

et al. 2010, Qi et al. 2008; 

Kruse & Dahmen 2018; 

Vogel 2016 

Main product from HTL  

Bio-crude • Energy production (especially 

thermal use) 

• (Upgraded) hydrocarbon biofuels 

• ‘Drop-in fuels’ 

• Refining to platform chemicals (e.g. 

phenols, aldehydes, organic acids) 

HyFlexFuel 2017; Vogel, 

2016; Elliot et al. 2015; Xu 

et al. 2014  

 

Main product from HTG  

Synthetic fuel gas  

 

• Energy production 

• Biofuel gases 

• Integrated algae cultivation 

• Combined applications (e.g. with 

fuel cells) 

Elsayed et al. 2014; Elliot et 

al. 2009; Wan 2016  

The variety of products and applications is one specific advantage of HTP, as it can be 

used for different material and energetic purposes. In addition, the products also have 

a relatively high quality compared to those from other thermochemical processes (e.g. 

regarding calorific value, ash composition, tuneable surface functionalities, presence 

of natural binders, conductive behaviour) (Román et al. 2018).   

Currently, most HTP-related activities are limited to research. However, the upscaling 

of the technologies is also being developed. Pilot and demonstration plants for the 

different types of processes exist, for example, in Germany, Denmark, Switzerland, 

Italy, Japan, the United States, and China (cf. Kruse & Dahmen 2018, Vogel 2016). 

Larger HTC plants are operated by Ingelia in Valencia (Italy) and AVA Biochem in 

Zug (Switzerland) (Hernández 2011, Hitzl et al. 2015, AVA Biochem 2015). HTL 

pilot plants are located, for instance, in Albany (USA) and Aalborg (Denmark) (Kan 

& Strezov 2015, Castello et al. 2018), and new pilot plants have also recently been put 
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into operation at the PNNL (Elliot et al. 2013). Furthermore, an HTG test facility that 

has already been in operation for some time is that of the Chugoku Electric Power 

Company and the University of Hiroshima in Japan (Matsumura 2015).  

Although technological advances within the industry are evident from the growing 

number of patent applications in this field (De Mano Pardo et al. 2016), so far HTP 

has not been established at an industrial scale, which is shown by the fact that hardly 

any plants exist in industrial and commercial continuous operation. However, the 

Terranova Energy HTC plant in Jining, China (Terranova Energy 2016) is currently 

being expanded to a large-scale level and is expected to be able to utilise around 40,000 

tons of sewage sludge (dry matter) in the future.  

Recent pioneering work on HTP comes, to a large extent, from Germany. In 2006, the 

Max Planck Institute for Colloids and Interfaces published a study (Cui et al. 2006) 

which garnered scientific interest in the re-discovery of HTP. Following this, the 

German Federal Environmental Foundation (Deutsche Bundesstiftung Umwelt) 

sponsored several research projects on HTP between 2007 and 2016, with a focus on 

HTC (Rekate et al. 2017, Grimm 2013). To date, research in this area has been highly 

active with an upward trend (cf. Kruse & Dahmen 2018).  

Based on these research activities, first technical applications have been developed and 

companies founded. For example, a cursory examination of the entries in the 

commercial register shows that most of the HTP companies in Germany were founded 

around the year 2008. Some have since disappeared from the market, but several pilot 

and demonstration plants have nevertheless been installed in Germany. Table 1.3. 

gives an overview of the current state of knowledge on existing HTP plants in 

Germany. It should be noted that due to a lack of up-to-date references, there is the 

possibility that some of the listed plants are no longer in operation. In addition, the 

facilities may be modified or further developed before the publication of this work. 

Table 1.3. HTP pilot and demonstration plants in Germany (own composition) 

Manufacturing 

company and plant 

location 

Plant specification References 

Karlsruhe Institute for 

Technology, Karlsruhe 

HTG pilot plant (VERENA) with a biomass capacity 

of 2 tons per day (max. 20 % dry matter content). 

The plant usually operates with 660 °C and 28 MPa. 

Potassium bicarbonate or Potassium carbonate is 

usually added as a catalyst. Products are carbon 

dioxide, hydrogen, ethane, methane, and traces of 

carbon monoxide. 

Möbius et al. 2012, 

Boukis et al. 2007, 

Boukis et al. 2006 

Grenol GmbH 

Kalkar/Niederrhein 

Industrially applicable HTC base module with a 

throughput of 10 tons of biomass per day (20-30% 

dry matter content). The HTC process takes place at 

a temperature of about 230 °C and about 25 bar 

Grenol GmbH 

2016 
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pressure. After a residence time of 3 to 6 hours, the 

resulting coal is cooled and discharged from the 

pressure vessel. Subsequently, the resulting coal, 

water, and sludge are separated and further 

processed. 

Suncoal Industries 

GmbH, Ludwigsfelde 

near Berlin 

HTC pilot plant which runs in batch mode or 

continuous operation for campaigns. It comprises 

six central units, including HTC module, cooling 

system, membrane pressure filter press, technical 

peripherals, and automation and measurement 

technology. The HTC reactor operates at 260 °C and 

47 bar. 

Suncoal Industries 

GmbH, 2019 

Terranova Energy 

GmbH, Kaiserslautern 

(near waste water 

treatment plant) 

HTC pilot plant with continuous stirred reactor for 

the processing of sewage sludge (15-30% dry matter 

content). The plant is in a container construction and 

can utilise the sewage sludge of up to 30,000 

inhabitants. Currently, the operation is based on 

campaigns. 

Terranova Energy 

GmbH 2017 

AVA-CO2 AG 

(HTCyle), Karlsruhe 

and Relzow/Anklam 

The biomass (max. 25% dry matter) is premixed 

with recirculated process water at 160 °C and 

converted in multi-batch operation at more than 220 

°C. The HTC plant (‘HTC-1’) in Relzow converts 

8,000 tons of biomass into 2,664 tons of solid 

product per year. These values relate to the first 

phase with two HTC reactors, whereas 48 reactors 

are planned as final equipment. The HTC process 

works here at 24 bar and 210 °C and requires a 

reaction time of 3 to 5 hours. 

Anderer 2012, 

Kusche & Ender 

2018 

REVATEC Research 

Centre Geeste 

HTC and VTC small-scale research reactors. 

However, Revatec also offers commercial 

equipment. In addition to the reactors and heat 

storage systems, all necessary peripheral 

components such as waste air and water treatment, 

process systems, and product packaging are 

provided in the plants. The specific parameters 

required for carbonisation of the biomass are 

adjusted on a case-by-case basis. The plants mainly 

use biogenic residues. 

Revatec 2011 

CarbonSolutions, 

Kleinmachnow/Teltow 

HTC demonstration plant which is approved for 

10,000 tons of biomass input per year. The system is 

driven on a campaign basis for individual customers. 

At approx. 200 °C and 20 bars, a carbon-water 

suspension is produced in a reactor and then dried. 

The plant mainly uses foliage and green waste from 

the Greater Berlin area as substrates. 

Schnell 2012 

Artec Biotechnology 

GmbH, Halle 

Campaign-wise operation of an HTC demonstration 

plant by Hallesche Wasser and Stadtwirtschaft 

GmbH as part of a research project. The temperature 

of the process is between 200 and 220 °C with an 

average residence time of 5 hours. The biomass used 

has a water content of max. 50%. The aim is to 

produce around 1,111 tons of solid product with 

2,500 tons of biomass input. 

Blümel et al. 2015 
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State of the art in the research field and knowledge gaps 

Currently, HTP research is focusing on individual technological and process 

engineering areas, with an emphasis on demonstrating economic feasibility. For 

example, Wilk et al. (2019) have examined how to derive optimal process properties 

for particular targets (e.g. identifying the most suitable substrates). These authors 

recommend using the solid product from HTC generated by sewage sludge especially 

for co-incineration. Further research has examined the most cost-effective solutions 

possible for the utilisation of polluted process water from hydrothermal carbonisation. 

For example, Fettig et al. (2018) propose a multi-stage process consisting of an 

optional nutrient recovery, an anaerobic purification stage, an aerobic post-treatment, 

and a final treatment with ozone or activated carbon. Furthermore, there are 

recognisable research priorities regarding the life cycle assessment of certain HTP 

chains (e.g. Meisel et al. 2019) and techno-economic analyses of specific applications 

of HTP (e.g. Ranganathan & Savithri 2019). 

In practical testing, much of the research is limited to laboratory or pilot-scale trials. 

In contrast, results relating to industrial continuous operation are scarcely available at 

present. This can be explained by the fact that there is a lack of such systems (see 

previous section). There is high interest in obtaining information on the holistic 

classification of HTP in industrial continuous operation (Reißmann et al. 2018b), but 

in many cases, this research first has to relate to fictitious modelling (modelled 

upscaling, for example, from the pilot scale), as can already be seen in some current 

work (Elliot et al. 2013). However, individual extrapolations to process characteristics 

or individual life cycle assessments on an industrial scale will not be sufficient to allow 

a holistic classification of HTP compared to reference systems, as only partial areas 

are considered.  

Thus, there is a research gap here, because holistic methods for the techno-economic, 

social, or ecological assessment of HTP barely exist. The only known work in this 

field is from Suwelack (2016), and it is limited to HTC. Suwelack (2016) developed 

and tested a standardised assessment method for bio-refinery technologies for model 

equations of HTC. In concluding the paper, the author mentions the need for further 

research in this area, in particular regarding the identification of evaluation criteria and 

their weighting in the context of a multi-criteria evaluation, which should be developed 

with the involvement of various stakeholders. The present work aims to address this 

knowledge gap and wants to cover the issue of a so far missing holistic multi-criteria 

evaluation approach for HTP. In part, it also seeks to derive assessment metrics for 

HTP and to weight those using expert judgments, which is also a gap in knowledge 

currently.  
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Another research gap can be seen in the analysis of future developments of HTP. 

Currently, the only recommendations for a future system contribution of HTC and 

HTL in Germany with a specific time horizon are those by Weidner and Elsner (2016). 

However, they do not conduct a structured and empirically based analysis, but instead 

mainly use corresponding literature and derive some basic statements. For example, 

they recommend the use of the solid product from HTC as an energy carrier, soil 

additive, and industrial carbon carrier. In general, Weidner and Elsner (2016) suggest 

concentrating on nutrient recycling more strongly, and on corresponding research and 

development in future. From a scientific perspective, however, a structured and 

methodologically robust analysis of the future development pathways of HTP using 

established methods (e.g. scenario analysis) is still lacking. In addition, there is still a 

dearth of information on key development factors for HTP in Germany, both at the 

system and the individual plant levels. Therefore, the present work also aims to 

contribute to developing this knowledge by analysing the system level with a scenario 

approach that was not applied for this field of research so far. Regarding the gap in 

knowledge on future-oriented analysis at the plant level, it is intended that a tailored 

technology assessment instrument is to be applied for different scenarios. 

Finally, it can be stated that this work addresses two knowledge gaps. First, the so far 

missing holistic analysis and corresponding method on the potentials of HTP as a 

treatment technology for wet biomass and second, the hitherto missing future-oriented 

analysis of the development chances and risks of HTP in Germany by means of a 

structured analysis.  
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Objective and research framework 

Based on the situation in Germany and the gaps in knowledge identified above, the 

main objective of this work is to systematically analyse the most important potentials 

and obstacles regarding the development of HTP for biogenic waste treatment in 

Germany using a holistic assessment approach, and to provide a series of 

recommendations to foster these potentials and reduce barriers for future development. 

As the target year 2030 was chosen, since the analysis focuses primarily on short-term 

development effects for HTP and therefore a time horizon that is longer than 2030 can 

only be estimated with very high uncertainties, which in turn reduces the validity of 

the results. Due to the fact that there is no market for HTP in Germany currently, it is 

also unclear whether the technology still exists in Germany beyond 2030, which also 

largely excludes a far-reaching time reference. 

Table 1.4. presents the two research questions (RQ) and six underlying hypotheses (H) 

which set the research framework in correspondence with the described objective.  

Table 1.4. Research questions and associated hypotheses (own composition) 

Research questions Associated research hypotheses 

RQ1. What are key barriers and 

potentials for HTP as biogenic 

treatment options in Germany so 

far? What are key assessment 

metrics that can be derived from 

this? How can they be set into an 

evaluation framework to estimate 

the techno-economic 

competitiveness of HTP concepts 

compared with each other and 

reference systems? 

H1. HTP are suitable future technologies for the utilisation of so 

far unused biogenic residues in Germany, if techno-economic, 

ecological, and legal barriers in particular can be overcome and 

specific potentials of the technology can be used most efficiently. 

H2. Especially if techno-economic uncertainties can be reduced 

and optimally eliminated, the application of HTP as treatment 

options for biogenic residues will become likely. 

H3. Techno-economic uncertainties can be reduced if 

stakeholders (e.g. technology developers, researchers, 

technology users, product users, policy makers) are able to 

compare different HTP concepts and paths with each other and 

with reference systems regarding their current and future 

potential by considering multiple key metrics. 

H4. If a tailor-made technology assessment approach considering 

multiple key criteria is available, the current and future potential 

of HTP under certain conditions and compared to reference 

systems will be easier to estimate. 

RQ2. What are key factors for the 

development of HTP in Germany as 

efficient treatment technologies for 

biogenic residues by 2030? Which 

future paths are based on these 

factors and particularly promising 

considering multiple key metrics 

(regarding RQ1)? 

H5. For the successful development of HTP by 2030 in Germany, 

some key factors are of very high importance. 

H6. If these key development factors are combined in different 

scenarios and assessed comparatively while considering multiple 

evaluation criteria, this will help to derive the most promising 

future development paths at the system and industrial-scale plant 

levels.   
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This work contains six articles (cf. p. IV and Part II) that contribute to the 

validation/falsification of the above hypotheses and to the answering of the research 

questions. Table 1.5. gives an overview of how the papers address the hypotheses.  

Table 1.5. Main content of the research articles and connection to the research questions (own 

composition) 

Paper Addressed hypothesis Main content 

I H1, H2 This paper presents a comprehensive literature review on 

technological, economic, political-legal, and ecological 

potentials and obstacles of HTP in Germany and derivation 

of research gaps. 

II H2, H3, H4 Based on the information from Paper I, an expert survey, 

and an expert workshop, the potentials and obstacles of HTP 

are further underpinned and structured as part of a SWOT 

analysis. Based on this, criteria for the multi-criteria 

evaluation method are derived. 

III H4 This paper covers the systematic development of the multi-

criteria technology assessment approach for HTP. 

Methodologically, a structured review is conducted in 

which suitable multi-criteria decision analysis (MCDA) 

methods for HTP are analysed and compared. On that basis, 

a tailor-made method is recommended. 

IV H5 Based on the information from Papers I and II as well as a 

Delphi survey conducted among 51 national and 

international HTP experts, key factors of HTP development 

until 2030 are identified by means of fuzzy logic. 

V H5, H6 Based on the results of Papers I and IV, fuzzy cognitive 

mapping (FCM) is used to generate three future scenarios 

for HTP in Germany by 2030. These are analysed by means 

of soft-computing their effect on other important key factors 

to derive system relationships and initial recommendations 

for action (system level analysis). 

VI H5, H6 Based on a modelled reference case on industrial-scale HTC 

for sewage sludge disposal, the three scenarios are analysed 

regarding their effect on the plant level. For this evaluation, 

the multi-criteria method developed in Paper III is used and 

first validated. In addition, this paper considers how 

efficient (i.e. in terms of MCDA) the HTC cases are 

compared to a conventional status quo treatment (i.e. 

thermal drying of the sewage sludge) and what 

recommendations can be derived from this regarding HTC 

technology development in this area (plant-level analysis). 

  



1 Introduction and background 27 

 

Expected value added of this work 

With regard to the current state of knowledge and according to the stated objective, 

the intended novel contributions of this work are as follows: 

(i) Derivation of key evaluation metrics for HTP in Germany at the industrial-

scale plant level, and their transfer into a transparent assessment procedure 

based on established methods but tailored to HTP assessment. 

(ii) Derivation of key development factors for HTP and scenarios for HTP 

development in Germany by 2030.  

(iii) System-level analysis of scenarios derived from the key development factors. 

(iv) Test application of the assessment procedure developed in (i), assuming 

industrial-scale HTP plants based on the scenarios developed in (ii). 

(v) Derivation of recommendations for HTP stakeholders based on a forward-

looking analysis that incorporates multiple evaluation criteria. 

The methods and results section are both structured according to these intended 

contributions to clearly show the connections among them. 

Next, Chapter 2 covers the methodology used to derive the mentioned intended 

contributions of this work. Chapter 3 then briefly shows the results and 

recommendations and gives a short discussion on these results. Chapter 4 gives a 

conclusion and a future outlook for this work.   
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2 Materials and methods 

To structure the work and ensure its consistency, this chapter presents the 

methodological steps in relation to the intended novel contributions of this work stated 

in the last sub-section of Chapter 1 (cf. expected value added of his work). The sections 

of this Chapter are therefore also named similar to the aforementioned intended novel 

contributions (i) to (v) 

Derivation of HTP evaluation metrics and technology 

assessment tool 

To develop a comprehensive information and data base for the several following steps, 

primary and secondary information on the current potentials and barriers of HTP in 

Germany was first collected and structured. In doing this, the focus was on primary 

information using empirical methods, as there is little or no secondary information 

available on some thematic issues concerning this dissertation (e.g. evaluation criteria 

for HTP). This information and data on the current situation were used in various 

phases of this work. Table 2.1. summarises the steps of the investigation. 
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Table 2.1. Methods used to research the current situation of HTP in Germany (own composition) 
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As mentioned, the basis information was used for several papers in this work. In 

addition, however, further up-to-date and relevant information was identified for each 

specific step, so the individual articles always refer to the latest available knowledge. 

Based on the potentials and barriers regarding HTP as technologies for the treatment 

of biogenic residues in Germany, specifically tailored assessment criteria were 

derived. The aim was for the evaluation criteria to be objective, consistent, 

customisable, transparent, and non-redundant. It was also important for them to have 

little or no influence on each other and for data to be available (Rohweder et al. 2015). 

Although criteria for technology assessments are highly relevant, their selection is 

often relatively unstructured and performed by a limited number of stakeholders. To 

increase the objectivity and transparency of the criteria and to assess their importance 

for evaluation, a structured approach is generally recommended and was therefore used 

in this work. Namely, the evaluation criteria were derived using a SWOT analysis 

(Kotler et al. 2010) based on the potentials and barriers identified in the previous 

methodological step. Based on this analysis, a subsequent derivation of objectives was 

performed, and their assignment to established criteria for technology assessments 

from corresponding references was checked (cf. Reißmann et al. 2018b). To derive the 

criteria based on the strengths, weaknesses, opportunities, and threats of HTP, 

qualitative goals were first derived from the principles listed in Table 2.2. 

Table 2.2. Target derivation principles based on a SWOT analysis (own composition) 

Target category Target derivation principle 

Targets considering strengths and opportunities Follow opportunities that fit the strengths 

Targets considering strengths and threats Use strengths to counteract threats 

Targets considering weaknesses and opportunities Eliminate weaknesses to use new opportunities 

Targets considering weaknesses and threats Develop defences to avoid weaknesses becoming 

the aim of threats 

The following principles were used to select criteria: 

1. Only those criteria are chosen that were applicable to at least one target, and 

2. The chosen criteria are modified (if needed) with regard to the corresponding 

target. 

The selection procedure for the criteria is flexible and can be applied to a range of 

selection cases. The corresponding rules for the final selection of the criteria can also 

be varied on the basis of the individual case and do not necessarily have to correspond 

to the above. The assignment of the criteria to the targets can be visualised with an 

arrow diagram. This is especially recommended for structuring with a large number of 

goals and potential criteria. Depending on the objective of the further evaluation, the 
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selected criteria can still be underpinned with information. This may include an 

assignment to a particular type of criterion (input, output, knockout criterion), 

information on units, assignment of minima and maxima (e.g. limits), and target values 

and/or ranges. In this work, an assignment of criterion type is made and units are 

specified. An indication of minimum, maximum, or target values is checked 

individually and only determined if this appears expedient for the corresponding 

criterion (e.g. to comply with certain legal requirements or due to technical 

restrictions) (e.g. Grandt 2015, Srdjevic et al. 2012). The advantages of the described 

procedure for deriving suitability criteria of the technologies are the high transparency 

(e.g. structured and traceable method) and objectivity (e.g. inclusion of expert 

knowledge). In addition, the criteria ultimately relate to both the benefits and 

drawbacks of HTP, as all dimensions of the SWOT analysis are included. This can 

prevent a positive or negative tendency in the selection of criteria. 

Based on the procedure described above, in this work the evaluation criteria for HTP 

listed in Table 2.3. were derived to serve as metrics for an HTP technology assessment. 

It has to be mentioned that this list was originally developed in Reißmann et al. 

(2018b), however, in the referenced publication there was a communication mistake 

with the publisher so that the Table in this article has no differentiation between types 

of criterion. Hence, the author wants to emphasize using the following Table as 

reference for the criteria list and not the Table in the mentioned article. 
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Table 2.3. Long-list on HTP assessment/suitability criteria (own composition) 

 

Table 2.3. provides a criteria ‘long list’. Depending on the purpose of the evaluation, 

the technologies considered, and other framework conditions, however, it could be that 

only a selection of criteria has to be used (‘short list’). A decision tree is suitable to 

select criteria (cf. Kamiński et al. 2018, Reißmann et al. 2018c), but another possible 

option is verbal argumentation (e.g. like in Paper VI).  

The technology assessment approach was developed specifically for the evaluation of 

HTP as conversion technology for moist biogenic residues. The central aim was to 

integrate the assessment criteria into a transparent, adaptable, and systematic multi-

criteria assessment approach for HTP that would be applicable for modelled scenario-

based case studies to derive recommendations for action. This is further explained in 

the forthcoming sections.  

The developed procedure is iterative; hence, one can return to a previous step at any 

time in the procedure and, if necessary, make adjustments, changes, and additions. 
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This is particularly helpful if the evaluation reveals problems that have not yet emerged 

in previous steps. Figure 2.1. shows the flowchart. 

 

Figure 2.1. Sequence of the technology assessment approach for HTP (own illustration) 

Step 1 of the outlined process entails describing the technologies, facilities, or 

processes to be assessed with a ‘technology fact sheet’. To achieve consistent, 

interpretable, and transparent results, it is recommended that the fact sheet contain 

information on the evaluation purpose, system boundaries, considered time period, 

basic characteristics of considered technologies, reference system(s), data availability, 

and quality of available data. 

The system boundaries are defined with regard to the process chain of HTP. This 

includes (1) feedstock and collection, (2) preparation, transport, and storage, (3) 

conversion and refinement, (4) product distribution, (5) product usage, and (6) end-of-

life. Depending on the evaluation purpose, some process steps may be excluded, which 

further reduces the evaluation effort (e.g. for data generation). The definition of the 

considered time period is especially important regarding data availability and 

evaluation purpose. The description of the basic technology characteristics (e.g. used 

substrates, process parameters, etc.) is needed to increase transparency and 

interpretability of the results and to check whether the technologies are generally 

comparable (e.g. regarding plant capacity). Including reference systems is necessary 

to set a comparative scale, which is why it is recommended that at least one such 

system be included in the evaluation. However, depending on the evaluation purpose, 

sometimes this is not necessary (e.g. if just HTP plant alternatives are compared). The 

check on data availability and quality is already crucial at the start of the assessment. 
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For example, if some data is not available or if data quality is insufficient, assessment 

alternatives or process steps must be excluded from the evaluation, or other 

assumptions have to be made. 

Step 2 of the technology assessment procedure includes the derivation of assessment 

criteria, as previously discussed. In this work, the criteria listed in Table 2.3. were 

used. However, using the illustrated approach (cf. Figure 2.1, right hand side), the 

criteria could be adapted if new information and/or further data is available.  

The multi-criteria analysis (MCA) takes place in step 3 of the overall process. The 

MCA approach was developed in particular on the basis of the review of multi-criteria 

decision-making instruments in the field of bio-waste management. First, it was 

Ganzexamined whether an already existing multi-dimensional assessment method 

could be directly transferred to HTP assessment. Based on recommendations and 

procedures published by Billig (2016), DFG (2013), Ganzevles and van Est (2012), 

and Scheffzcik (2003) the following requirements for the HTP assessment procedure 

were considered: transparency, consistency, transferability, holistic nature, multi-

dimensionality, applicability, objectivity, and adaptability. Considering these 

requirements, a combination of the Analytical Hierarchy Process (AHP) (Saaty 1990) 

and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 

(Hwang & Yoon 1981) was found to be most suitable for the evaluation of HTP. 

Hence, the developed multi-criteria assessment is performed as follows. 

1. Weighting of the assessment criteria using an adapted AHP 

According to Saaty (1990), within the framework of the AHP, a decision hierarchy is 

first created to represent the goals, evaluation criteria, and alternatives. However, this 

step is omitted in the technology assessment procedure outlined here, since the criteria 

and the evaluation alternatives have already been defined by steps 1 and 2 of the overall 

process. Next, the decision criteria are evaluated by pairwise comparisons to derive 

priorities (in the mathematical sense, weightings), which are subsequently checked for 

consistency. Finally, the best alternative is selected based on the criteria and priorities. 

In this procedure, an adapted AHP application is performed because the decision 

hierarchy (completed by steps 1 and 2) and the final selection of the best alternative 

(selected in TOPSIS) are neglected. In essence, the AHP is used to derive the criteria 

weights. 

In this work, an expert Delphi survey (cf. Tab. 2.7.) was conducted to prioritise the 

criteria. These types of surveys are characterised by a systematic multi-step process 

including feedback loops. The goal is to minimise respondents’ misjudgements by 

giving them the chance to correct or confirm answers and assessments (Rowe and 

Wright 1999). Due to the high number of potential pair comparisons, the experts were 
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asked to compare criteria according to evaluation categories, as well as to compare the 

evaluation categories themselves in terms of their relative importance. This approach 

is common in the AHP due to the hierarchical criterion structure (Peters & Zelewski 

2002). Table 2.4. depicts the individual criteria and hierarchy levels evaluated in this 

work in the context of pair comparisons. 

Table 2.4. Assignment of the evaluation criteria in a hierarchical structure according AHP (own 

composition) 

Hierarchy level 1: 

Dimensions or categories of the 

criteria (upper criteria) 

Hierarchy level 2: 

Criteria within the dimensions or categories (sub 

criteria) 

Economics Production costs of the final product 

Calorific value of the final product 

Carbon content of the final product 

Technological development state 

and technological efficiency 

Technology Readiness Level (TRL) 

Distance of the plant to suitable and available substrates 

Energy balance/ energy efficiency of the process 

Material balance/ material efficiency of the process 

Ecological performance GHG emissions through the process 

Degree of pollution of the process water (with or without 

treatment depending on the purpose of the assessment) 

Share of recycled phosphorus in the process 

Within the hierarchy level, the criteria are now compared, and their importance for the 

higher level, or at the highest criteria level, the overall evaluation goal (i.e. most 

efficient treatment of biogenic residues in this case), is estimated. The results of all 

pairwise comparisons are recorded in an evaluation matrix. At the main diagonal, all 

values are essentially 1 (corresponds to the same importance), while for a value above 

(below) the main diagonal in a reflection along the main diagonal, the reciprocal of the 

original value is obtained (Weber 1993). The following assessment scale developed 

by Saaty (2000) is used for the pairwise comparisons. 
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Table 2.5. Evaluation scale for pairwise comparisons within the AHP (Saaty 2000) 

Values aij for pairwise comparisons Meaning of the value aij 

1 Same importance of both criteria 

3 Slightly greater importance of one criterion 

5 Significantly greater importance of one criterion 

7 Much greater importance of one criterion 

9 Very much greater importance of one criterion 

2, 4, 6, 8 Intermediate values 

To determine inconsistencies in the pair comparisons, following Saaty, a Consistency 

Index (C.I.) and a Consistency Ratio (C.R.) are subsequently determined. With 

complete consistency of the pair comparisons in the evaluation matrix A, there exists 

a maximum eigenvalue 𝜆𝑚𝑎𝑥 which has the same dimension n as the evaluation matrix 

with the corresponding eigenvector v (Saaty 1994). In mathematical terms, this means: 

𝐶. 𝐼. =  
𝜆𝑚𝑎𝑥− 𝑛

𝑛−1
         (1) 

𝐶. 𝑅. =  
𝐶.𝐼.

𝑅.𝐼.
 , 𝐶. 𝑅. < 0.1  to ensure consisteny     (2) 

R.I. is a random index which is pre-defined through Saaty depending on the number 

of considered criteria (Saaty 2000). 

In this work, AHP software, namely the Excel-based application AHPcalc, was used 

to determine the criteria weights and consistency values (Goepel 2013). The resulting 

criteria weighting/prioritisation listed in Table 2.6. for the individual (sub) criteria of 

HTP was calculated based on the results of the Delphi survey (cf. Table 2.7.). The 

coloured backgrounds identify the corresponding upper categories (grey: economic 

efficiency, blue: technological performance, green: ecological performance). The sub-

criteria were already prioritised in their entirety on the basis of their overall criteria 

(weighted arithmetic mean) (cf. Peters & Zelewski 2002). The background 

calculations can be found in the supporting calculations of Paper VI and can also be 

requested from the author. 
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Table 2.6. Weightings of all HTP assessment criteria determined by AHP (own composition) 

Assessment criteria Criteria weighting 

according to AHP based 

on Delphi expert survey 

Production costs of the final product 28% 

Calorific value of the final product 8% 

Carbon content of the final product 5% 

Technology Readiness Level (TRL) 5% 

Distance of the plant to suitable and available substrates 6% 

Energy balance/ energy efficiency of the process 11% 

Material balance/ material efficiency of the process 4% 

GHG emissions through the process 11% 

Degree of pollution of the process water (with or without treatment 

depending on the purpose of the assessment) 

9% 

Share of recycled phosphorus in the process 13% 

2. Application of the weighted criteria in TOPSIS to identify the relative best 

alternative 

Next, the weighted criteria are transferred to TOPSIS. Depending on how many 

assessment criteria are used, the weightings given in Table 2.6. must be adjusted 

accordingly in the same ratio, so that 100% always results as a total weight. As an 

example, reference should be made to Paper VI, in which some criteria were excluded 

and the weights were hence adjusted. In the exemplary application of the method in 

Reißmann et al. (2018c), estimated weights were used because at that time the expert-

based AHP was not yet completed. 

In TOPSIS, the relatively best alternative is sought by constructing the virtual best case 

and worst case based on the information available, and using these two benchmarks to 

map the relative merits of the alternatives (Hwang & Yoon 1981). Multi-criteria 

methods which depict such relative advantages are called multi-attribute decision-

making methods with a discrete solution space (Geldermann & Lerche 2014). The 

advantage of TOPSIS is that it is able to include a large number of criteria even if the 

preferences are unclear. Thus, no preference information is required by the user, which 

increases the user-friendliness of the method. Within TOPSIS, the criteria are divided 

into input (cost) and output (benefit) (see also the classification in Tab. 2.3.). The idea 

behind this is that high input (output) quantities such as costs (benefits) affect the 

efficiency of the overall result and thus reduce (increase) it. However, for undesired 

inputs (outputs), the ratios are reversed, such as for an input of waste (Peters & 

Zelewski 2007). An assessment of the relative importance of the criteria is not 

specified in TOPSIS. However, as part of the technology assessment approach 

presented here, the prioritisation has already been carried out using AHP. 
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The following procedure is conducted in TOPSIS. A detailed explanation of the 

individual steps can be found, for example, in Peters and Zelewski 2007. 

a. Determination of decision matrix D: The data of the individual criteria per 

alternative are entered in a decision matrix D. 

b. Determination of the normalised decision matrix R: The aim is to normalise all 

criteria values to the same interval to prevent an unintentional implicit weighting 

due to economies of scale. 

c. Determination of the weighted normalised decision matrix V: Each column vector 

of the matrix R is multiplied with the corresponding criteria weightings calculated 

by AHP. 

d. Determination of virtual alternatives: From matrix V, the best and worst criteria 

are selected to construct a ‘positive ideal’ A+ and a ‘negative ideal’ A- alternative. 

e. Determination of the distances: For each alternative Ai, Euclidean distances (Si
+; 

Si
-) are calculated to the two virtual alternatives. 

f. Determination of the efficiency index ci: This index maps the distances to the best-

case and worst-case alternative. The index refers to the real number interval [0, 1] 

and is higher the closer (farther away) the alternative is to the efficient (inefficient) 

edge. 

In this work, the TOPSIS efficiency index was calculated in Microsoft Excel. The 

Excel sheets and background calculations are available on request. 

Finally, in step 4 of the assessment procedure, some interesting factors can be varied, 

and their influence on the overall results can be identified using a sensitivity analysis. 

As a result, thresholds, break-even points, or development corridors can be derived. 

To counter uncertainties and to reflect ranges, this is particularly recommended when 

applying the method in the context of scenarios. 
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Derivation of key HTP development factors and scenarios 

The methodological elements described so far have mainly addressed RQ1 to first 

analyse the current situation and to use this information to develop the evaluation 

approach. However, the following elements of the future-oriented analysis of HTP in 

Germany are dedicated to the target year 2030 and thus address RQ2. 

Because the analysis concerns the future, it was first necessary to find information on 

the probable development of HTP by 2030. Table 2.7. gives a brief overview of the 

survey methods used to this end. 
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Table 2.7. Methods used to research the development of HTP in Germany by 2030 (own composition)  
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First, a long list of potential development factors for HTP in Germany was compiled 

based on information concerning the current situation in this regard (cf. Table 2.1.). 

This information was critically examined and completed with additional factors in a 

scenario workshop. In addition, an influence analysis was conducted in the workshop 

to determine how the individual factors affect each other. The instrument used for this 

was a networking table. With such a table, one determines which influence (no effect, 

small effect, large effect) one factor exerts on another through direct comparison of 

the factors. Subsequently, the active and passive effects are cumulated, and the factors 

are compared using an influence matrix (Kosow & Gaßner 2008).  

Initially, these results served as input for the creation of a Fuzzy Logic Cognitive Map 

(FCM) (Kosko 1986), which was further discussed and partly revised using 

information from the literature review on HTP. In turn, the information from the FCM 

and the influence analysis served as input for the preparation of the questionnaire of 

the Delphi survey. The Delphi survey focused in particular on the following factors 

concerning the further development of HTP in Germany: probability of occurrence, 

relevance in case of occurrence, and risk of non-occurrence. The first round of the 

Delphi survey (n=27) focused primarily on development factors that have a high 

impact on the overall system according to the FCM indicator ‘Centrality’ (Obiedat et 

al. 2011). In the second survey round (n=12), additional factors were added following 

the feedback from some survey participants. 

Using the Fuzzy Delphi Method (FDM) (cf. Saffie et al. 2016), the results of the survey 

were systematically evaluated. Through the FDM, expert opinions were integrated by 

means of fuzzy numbers based on a cumulative frequency distribution and 

corresponding fuzzy integrals. As a result, gaps between the consensus levels of the 

expert panel were calculated, so a relatively small number of survey participants was 

sufficient to obtain reliable information on the degree of consensus (Hasan et al. 2017). 

Hence, two Delphi rounds were enough to reach majority consensus within the expert 

panel. The result of this process is a list of key development factors of HTP in Germany 

by 2030, including information on the relevance of their occurrence, probability of 

occurrence, and risk of non-occurrence. Figure 2.2. provides an overview of the 

methodological process. 
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Figure 2.2. Methodological sequence of the derivation of key development factors (own illustration) 

Based on the identified key factors, three scenarios for HTP in Germany by 2030 were 

derived using the following principles: 

• Scenario 1 incorporates the factors with the highest probability,  

• Scenario 2 incorporates the factors with the highest relevance of occurrence, and  

• Scenario 3 considers the highest probability factors but excludes factors with the 

highest risk in case of non-occurrence.  

To test the consistency of the individual scenario factors, a consistency check was 

executed for each scenario. 

Performing the system-level scenario analysis  

Based on the key development factors and scenarios derived, a scenario analysis for 

HTP on the system level was executed. The aim was to analyse the effects of the 

scenarios on the whole system of key factors by using the FCM. The system describes 

the totality of key development factors included in the FCM. The scenario factors, 

which were included but assumed an initial value of ‘0’ (no influence), were changed. 

To map a strong influence of the corresponding scenario factor, the factor was set to 

‘+1’, and a slightly weaker effect was represented at ‘+0.5’. The online software tool 

‘Mental Modeler’ (Gray et al. 2013) was used for the system-level scenario analysis. 
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Plant-level scenario analysis and test application of the 

assessment tool 

Furthermore, the scenarios’ effects on a single industrial-scale plant were analysed. As 

a base case, an industrial-level sewage sludge HTC plant in Germany was assumed, 

representing the current best available technology (BAT). The plant was characterised 

as follows. 

Table 2.8. Base case study for the multi-dimensional scenario analysis on the plant level (own 

composition based on data from Blöhse 2017) 

Characteristic Description 

Technology type HTC with a capacity of 14,300 tons of dry matter input per year 

Substrate input Mechanically dewatered municipal sewage sludge 

Processing parameters 220 °C, 2 hours residence time, 15 bar, pH-value 7 to 8, no 

process optimisation 

Logistics 20 kilometre distance to the place of substrate occurrence, 40 

kilometre distance to the place of usage of the solid product 

Product yield/ mass reduction 68% of dry matter input 

Based on data from Blöhse (2017), the evaluation criteria for HTP relevant for sewage 

sludge HTC were first collected for the base case. Considering various assumptions, 

these values were adjusted for the individual scenarios. The HTC cases were compared 

with a technology representing the current status quo in sewage sludge disposal. The 

reference case was thermal drying and subsequent mono-combustion of the dried 

sludge. The different HTC cases had the same utilisation path: the end product was 

also fed to a mono-combustion. Using the technology assessment tool, the individual 

alternative cases were examined for their TOPSIS efficiency and compared with the 

conventional reference case. To test the plausibility of the instrument, it was assumed 

that the best scenario also had the best efficiency at the plant level. This hypothesis 

was checked through the analysis. Subsequently, sensitivity analyses were conducted 

for influential parameters (i.e. reduction of disposal costs at the sewage sludge 

incineration plant, different learning rates, different costs and performances of the 

process water treatment) to determine threshold values compared to the reference case. 

Thus, the analysis investigated the conditions under which the alternatives were 

advantageous compared to the reference. As a result, first statements on development 

goals for the considered metrics could be derived under certain scenario assumptions. 

However, these statements apply only to the underlying modelled cases, as explained 

in detail in the discussion section. 
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Derivation of core recommendations 

Finally, the core recommendations were derived on the basis of the key development 

factors identified as priorities and the information gained from the research (primary 

and secondary information). A factor identified as being particularly relevant was first 

checked to see whether it was currently developing positively or negatively. Since a 

positive development was hypothesised based on the literature and the results of the 

primary surveys, the derivation process examined how positive development can 

continue to be ensured, or whether a negative development can be slowed down or 

even reversed. In addition, based on the model assessment of sewage sludge HTC (s. 

previous subchapter), some specific recommendations for this case were derived; 

however, these are not generalisable and require further validation.  

For structure, the recommendations have been differentiated between political-legal, 

technological, economic, ecological, and social areas. Furthermore, suggestions have 

been made for suitable addressees and possible action horizons to better operationalise 

the recommendations. 
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3 Results and discussion 

In this chapter, the main results of the work are briefly presented and discussed. Based 

on this, core recommendations for key stakeholders (i.e. in politics, economics, 

science, and civil society) in Germany are proposed. More detailed information on 

individual results and recommendations are part of the attached articles; this chapter 

only covers key findings. Furthermore, the following is oriented to the intended novel 

contributions of this work presented at the end of Chapter 1, so that the systematic 

structure of this work becomes clear. Only the intended contribution (i) is not taken up 

again here, since this is a methodological result and was already explained in the 

methods section. 

Key development factors for HTP in Germany and 

scenarios 

As mentioned in the methods section, the potentials and barriers for HTP in Germany 

were first identified on the basis of available literature. Examples of important 

potentials are  

• the high energy efficiency of HTP compared to alternative conversion methods, 

• the high energy and carbon content of the final products, 

• the low substrate procurement costs for biogenic residues and waste, 

• the very low, sometimes even negative (as a carbon sink), greenhouse gas potential 

compared to conventional reference systems, and 

• the legal tightening of the Fertilisers Ordinance and Sewage Sludge Ordinance that 

limit agricultural sewage sludge utilisation, which makes alternative processes 

such as HTP more necessary, in particular with an integrated phosphorus recovery. 

On the other hand, substantial obstacles arise, for example, through 

• a lack of experience in commercial and industrial continuous operation of plants, 

• a lack of knowledge on optimal process calibration, efficient treatment of process 

water from HTC, and stability of the HTC solid product as a carbon sink in soil, 

• legal framework conditions, in particular the legal waste status of HTP products, 

which makes an energetic usage difficult, and 
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• missing standards for processes and products (i.e. less transparency for 

stakeholders). 

These findings were further underpinned by information from the first survey and the 

focus group workshop, and structured using a SWOT analysis. This information base 

was subsequently used to derive both the technology assessment criteria and the key 

factors. Table 3.1. provides an overview of the identified strengths, weaknesses, 

opportunities, and threats, categorised into technological, economic, and ecological 

aspects. 

Table 3.1. Strengths, weaknesses, opportunities, and threats of HTP in Germany (own composition) 

 Technological aspects Economic aspects Ecological aspects 

Strengths High energy efficiency 

High energy and carbon 

content of end products 

Suitable for wet biomass 

Large product variety Low GWP 

Weaknesses Knowledge gaps on 

process basics 

Less knowledge and 

experience on efficient 

process water treatment 

No robust data for large-

scale business cases 

Partly low product 

quality 

No estimations for 

product potential 

High pollution of 

HTC process water 

Opportunities Integrated phosphorus 

recycling 

Necessity of new sewage 

sludge treatment options 

Inter- and cross-sectional 

cooperation 

Estimated decrease in 

production costs for HTP 

products 

HTC solid product as 

potential carbon sink 

Threats Suitable substrates are 

already in other use 

Variations in feedstock 

composition and quality 

Missing reference plants 

and long-term experiences 

Investment uncertainties 

High competition on 

sales and procurement 

markets 

Unknown stability of 

HTC solid product in 

soil (as carbon sink) 

The aforementioned legal potentials and obstacles also continue to be highly relevant. 

However, these were not included in the SWOT analysis, as no legal technology 

assessment criteria need to be derived for HTP, and this analysis was primarily used 

to derive such criteria. Based on this analysis, the Delphi survey, and the scenario 

workshop, the following key factors presented in Table 3.2. were developed. 
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Table 3.2. Key development factors of HTP in Germany by 2030 (own composition; including pages 

47-49) 
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It should be noted that estimates on the relevance of occurrence, risk in case of non-

occurrence, and probability of occurrence are based solely on the Delphi survey 

experts’ assessment. However, 27 European HTP experts participated, which is a 

relatively large group for this small area of research. The assessments can therefore be 

considered largely representative, particularly because the panel covers the most 

important stakeholders (see Paper IV). The Delphi survey participants failed to reach 

consensus for all factors and categories. Hence, Figure 3.1. simply visualises how the 

relevance and probability of occurrence of consensus factors in both categories were 

assessed. The scale represents the results of the fuzzy evaluation (cf. Reißmann et al. 

2018d). 

 
Figure 3.1. Key factor relevance and probability for consensus factors (own illustration) 

For the factors on which consensus was reached in terms of both relevance and 

probability, it can be stated that ‘process water treatment’ and ‘system integration 1’ 

are both highly relevant and likely to occur. 
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Finally, scenarios based on these key factors were derived, considering only consensus 

factors. Table 3.3. shows the resulting scenarios and their consistency values. A value 

close to 3 indicates consistency. 

Table 3.3. HTP scenarios for Germany by 2030 (own composition) 

HTP scenario Scenario description 

Technological action 

(TA) 

 

𝑐𝑜𝑛𝑠̅̅ ̅̅ ̅̅  ≈ 3  

Consistent 

The available and technically usable substrate volume for HTP and the 

disposal costs for HTP-relevant residues (e.g. sewage sludge) increase 

by 2030. Depending on the individual case, high-performance treatment 

concepts are used for the polluted process water. Due to increasing 

experience in industrial continuous operation, learning effects in 

business management can be observed. This means that if the cumulative 

output quantity is doubled, the production costs are reduced by a factor 

(learning rate) of a maximum of 30%. 

Legal and technological 

action (LTA) 

 

𝑐𝑜𝑛𝑠̅̅ ̅̅ ̅̅  ≈ 3.3 

Nearly consistent 

HTP plants are used decentral and integrated into suitable waste and 

waste water treatment plants. Due to increasing experience in industrial 

continuous operation, learning effects in business management can be 

observed (for explanation, see TA scenario). Products made by HTP 

with waste and residual materials are legally permitted as standard fuels. 

Nutrient recycling (e.g. phosphorus) is integrated into HTP. 

No action (NA) 

 

𝑐𝑜𝑛𝑠̅̅ ̅̅ ̅̅  ≈ 3.2 

Nearly consistent 

The available and technically usable substrate volume for HTP and the 

disposal costs for HTP-relevant residues (e.g. sewage sludge) increase 

by 2030. Although the risk in non-occurrence of an efficient process 

water treatment is rated as uncertain according to the survey results, this 

factor is excluded, as it is seen as a serious risk based on further 

discussions with experts. Learning effects are also excluded as their non-

occurrence is seen as a serious risk.  

System-level scenario analysis 

The identified scenarios are now examined regarding their effect on the overall system 

of factors. This is done using the aforementioned expert assessment based FCM, which 

has an underlying adjacency matrix that maps the individual influences of the factors 

on each other. The quantitative representation of the influence belongs to a discrete 

space containing {-1, -0.5, 0, 0.5, 1}, whereby negative/positive values represent a 

negative/positive influence, and the value ‘0’ represents no influence. Table 3.4. shows 

the adjacency matrix.  
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Table 3.4. Adjacency matrix: FCM factors/concepts relationships (own composition)  
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This matrix represents the connections between the factors and the influence intensities 

as well as the direction of the influence (positive, negative). If one transfers these 

relationships into the FCM, the compounds are additionally deposited with a so-called 

activation function, which describes the values of the concepts (or factors) in progress 

– that is, a dynamic component is added to the static representation. In this work, a 

sigmoid function is assumed as the activation function, as it represents one of the most 

common functions for FCM applications. Using the activation function, the state of 

the system changes in the course depending on the scenario’s influences (i.e. factor 

changes). The inference process stops when stability is reached. The final vector state 

shows the effects of conceptual changes on the whole system of concepts (Leon et al. 

2010, Salmeron et al. 2012). Figure 3.2. shows the results and differentiates between 

a ‘high impact’ (change +1) and ‘lower impact’ (change +0.5) case. 

 

Figure 3.2. FCM system factor variations for HTP scenario with high and lower impact (own 

illustration)  

The main conclusion based on these observations is that, above all, the LTA scenario 

exerts significant effects on the overall system in both impact cases, which is 

attributable in particular to the strong influence of the assumed legal framework 

conditions. The effects are largely positive for the system development. For example, 

a stronger energy market penetration is foreseeable, which increases the sales potential 

for the products. In addition, foreign markets become less important, as Germany now 

also provides sufficient legal certainty for product sales. The dynamics triggered by 

the LTA scenario also lead to adjustments in the field of approval and planning 

procedures. Based on the factor descriptions adopted here, for example, approval 

procedures are accelerated and, if justifiable, simplified to be able to react faster to the 

stronger market dynamics. Other technological developments are also observed; for 

instance, the probability of developing a more cost-effective solution for treating HTC 

process waters increases. In the other two scenarios, the changes are much smaller, 
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which indicates some system stability but also leads to less positive system effects 

compared to the LTA scenario. 

Test application of the assessment tool on plant level 

scenarios 

The scenarios are examined at the plant level in comparison with each other and with 

respect to a conventional reference system. For this purpose, the developed technology 

assessment tool is tested for applicability and plausibility. Sewage sludge HTC serves 

as an exemplary case and the thermal drying of sewage sludge as the reference 

technology representing the current status quo. Using the assumption-based 

extrapolation of the individual assessment criteria which are relevant for this case, 

specific values are obtained for the individual cases, as shown in Table 3.5.            

Table 3.5. Criteria values for alternative cases (own composition based on calculation according to 

data from Blöhse 2017) 

Criteria Unit HTC- 

Base 

HTC-

TA 

HTC-

LTA 

HTC-

NA 

Reference 

Minimising criteria       

Production costs per 

unit solid product 
EUR/t 410.52 401.36 323.39 420.92 329.77 

Conversion 

efficiency/mass 

balance 

% 70 63 63 70 100 

Distance of plant to 

suitable substrates 
km 20 20 0.1 20 0.1 

Pollution of process 

water (treated) 
mgO2/l 24340 9787 24340 24340 0 

Maximising criteria       

Energy 

efficiency/energy 

balance 

% 49 80 78 49 18 

Share of recycled 

phosphorus 
% Pin 0 0 85 0 0 

Based on these values, one can already identify which cases are more advantageous 

than others in certain aspects, but overall advantages are still difficult to assess. In 

addition, the weightings of the criteria (adjusted proportionally to the criteria 

considered here according to the original weights in Table 2.6.) are not yet included. 

If one includes the criteria set and the weightings and transmits this in TOPSIS, the 

result is as follows. 
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Table 3.6. TOPSIS efficiency scores for the alternative cases (own calculations) 

Cases TOPSIS efficiency Rank 

HTC-Basis Case 0.14 4 

HTC-TA Scenario 0.27 3 

HTC-LTA Scenario 0.78 1 

HTC-NA Scenario 0.11 5 

Reference technology 0.59 2 

Table 3.6. shows that the LTA scenario is to be preferred on the basis of the multi-

criteria analysis. This result seems plausible, as the LTA scenario performs best on the 

highly weighted key criteria production costs and recycled phosphorus content. 

However, the performance in process water treatment is low, which should be 

considered in making the overall decision. If this particular factor is intolerable for a 

decision maker, this alternative should not be preferred, and the reference technology 

should be used instead. However, such basic conditions can already be defined in the 

criteria system, for example by setting a limit value for the pollution of process water 

as K.O. criterion, or a higher weighting for this criterion.  

Based on this initial case, three parameters are further analysed regarding their 

sensitivity, since they are expected to have a significant impact on the overall result. 

The values of the reference technology are kept constant to ensure comparability for 

all sensitivities. Table 3.7. summarises the results of the sensitivity analysis. 

Table 3.7. Main results of the sensitivity analysis for HTC sludge disposal cases (own composition) 

Sensitivity  Main results 

Reduction in disposal costs 

for sludge incineration 

The reduction in disposal costs was considered for all HTC cases 

except the LTA scenario, where this was already assumed initially. 

With a reduction of the costs of up to 50% of the initial case, there is 

no significant difference in the overall assessment. If the disposal 

costs for HTC are completely eliminated, the TA scenario and the 

base case will be more competitive but still less than the reference 

system. The impact of disposal costs on the overall result can be 

estimated as medium. 

Different learning rates The learning rates were only varied for the TA and LTA scenarios, 

as a learning rate was only assumed for these cases. With learning 

rates below 15% (which corresponds to the initial case), the picture 

of the overall rating is much more balanced and, in addition, the 

reference technology is most advantageous. At a learning rate of 

25%, the LTA and TA scenarios are both more advantageous than 

the reference technology. The influence of the learning rate on the 

overall result can be estimated as very strong. 

Costs and performance in 

process water treatment 

This parameter was only varied for the TA scenario, as it is the only 

one that accepts additional process water treatment to the base case. 

Even with a high cleaning performance (98%) and low cost increase 

(50%) compared to the original case, the overall rating hardly 

changes, and the TA scenario becomes the least favourable case due 

to the increase in costs. This scenario can only be advantageous 

compared to all variants if there is a 39% cost reduction compared to 

the initial case and the highest cleaning performance of 98%. The 

treatment performance therefore has a small influence on the overall 
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assessment if cost increases. Hence, in parallel to an increase in 

treatment performance, cost reduction potential shall be determined 

(e.g. energy savings due to the use of waste heat) and used as well. 

However, the high importance of costs is reasoned in the high 

weighting of this metric in this work (cf. Table 2.6.), which is why 

another weighting could provide different results depending on the 

individual case. 
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Recommendations 

Based on the main results of this work, some core recommendations for different areas 

and corresponding target groups can be derived. These recommendations mainly refer 

to the development of HTP in Germany for the treatment of biogenic residues by the 

target year 2030. In terms of the potential contribution of HTP to the achievement of 

objectives of the circular economy and bio-economy, the recommendations should 

indicate the extent to which HTP represents a suitable technology and the extent to 

which this does not apply. The results of the papers show that HTP can make important 

contributions to environmental and resource conservation (e.g. phosphorus supply, 

carbon neutral fuel, bio-based materials), but besides these advantages, various 

disadvantages and large obstacles can also be seen. For example, techno-economic 

advantages through the more efficient and thus more cost-effective drying of sewage 

sludge to the status quo are conceivable. However, process water treatment still incurs 

costs that are too high and an efficient solution is lacking, which significantly limits 

the economic benefit of the technology. In the field of sewage sludge utilisation, 

however, the legal framework conditions under the amended Sewage Sludge 

Ordinance suggest that HTP could play a role in this area as an alternative conversion 

technology. Here, however, a political will and the fastest possible implementation are 

necessary if the first large-scale facilities are to be realised by 2030. 

Table 3.8. provides an overview of the main consolidated recommendations based on 

the results of this work, the primary addressees of the recommendation, and the 

recommended implementation horizon, which differentiates between short-term (1-2 

years), medium-term (> 2-5 years), and long-term (> 5-10 years) (if assessable). 

Table 3.8. Key recommendations for HTP development in Germany by 2030 (own composition) 

Key recommendations Horizon for 

action 

Addressees 

Recommendations for policy and legislation  

To increase legal certainty in the energetic application of HTP 

products from residues, a clear legal framework should be 

sought. In EU law, the EU itself, or in national law, Germany, 

could specify Art. 6 WFD. Hydrothermally produced biofuels 

could then be used more easily as a standard fuel, thus 

opening access to the energy market. According to §5 sec. 1 

KrWG in Germany, the prerequisite for this currently already 

exists. However, legal expertise is required by the companies 

affected by the standard to classify a situation. To provide 

more clarity, official product approval notices would be 

recommended as an alternative to a specific regulation. The 

legal examination of the waste classification of products from 

HTP can also be achieved by certification systems. The 

clearer distinction between products and waste would reduce 

the risk of litigation (for example, licensing procedures, 

Short-term European and 

national 

legislators, 

competent 

agencies, 

standardisation 

institutes 
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registration requirements [e.g. REACH regulation]) for HTP 

companies. 

When using the solid product from HTC as a fertiliser, soil 

conditioner, or culture substrate, it must also be clarified 

whether it is waste or a product. Therefore, the above legal 

recommendations also apply to this area. Furthermore, a 

license according to § 3 (1) Fertiliser Act is required for use 

as fertiliser. Currently, however, the solid product from HTC 

is not included in the corresponding positive list of the 

Fertilisers Ordinance or approved by the EU Directive. To 

make this market accessible to the product, an approval is 

generally recommended, whereby, of course, relevant limit 

values for pollutants, application rates, etc. must be complied 

with. However, the legal position for products from sewage 

sludge must be examined separately, since higher pollutant 

loads can occur here (especially heavy metals). 

Medium-term European and 

national 

legislators, 

competent 

agencies 

Recommendations for technological development  

Research and development in the field of HTC should focus 

on cost-effective solutions for the treatment of the liquid 

phase. There is currently a major techno-economic barrier, 

and without its timely solution HTC in Germany is expected 

to have little development opportunities, as this work has 

shown. A starting point for cost-efficient concepts could be 

system integration (for example in combination with bio-

refineries or waste water treatment plants). Appropriate 

approaches should be implemented with the involvement of 

all relevant stakeholders (such as farmers) to make the most 

of synergies. The advantage of system integrated approaches 

is cost reduction potential (e.g., short transport routes, waste 

heat recovery), the integration of efficient nutrient recycling, 

and cost-effective process water treatment, in combination 

with other technologies (e.g., biogas plants or waste water 

treatment plants in terms of process water cycle). 

Short-term Research and 

development, 

plant developers, 

plant operators 

HTP can potentially contribute to resource efficiency and the 

establishment of a circular and a bio-based economy. 

Therefore, public technology promotion is recommended in 

the key areas identified here, including in the development of 

a cost-efficient process water treatment, in system integrated 

approaches, and to support the construction of the first plants 

in industrial continuous operation in Germany. In particular, 

experience in industrial continuous operation is necessary to 

reduce uncertainties in technical and economic operation. As 

the learning effect analysis showed, significant cost 

reductions over time can be achieved, particularly through 

experience gains. This is essential for a possible 

competitiveness of HTP in comparison with reference 

technologies. 

Medium-term Funding agencies, 

plant developers, 

plant operators 

In Germany, future research and development should focus 

more on HTL and HTG than on HTC; this could contribute in 

particular to the mobility and heating sector (e.g. drop-in 

fuels). Because the burden of by-products in these processes 

is lower than for HTC, the treatment of these by-products is 

probably less expensive. Challenges lie in suitable 

procurement markets. For example, since algae are 

particularly suitable substrates for HTG, the raw material base 

in Germany could be insufficient for this purpose. Therefore, 

research should first focus on HTL- and HTG-suited residual 

and waste materials that must be disposed of anyway. 

Long-term Research and 

development 

Recommendations for economic operation  
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Currently, HTP are not cost competitive with established 

reference technologies. Taking sewage sludge disposal as an 

example, it has been shown that thermal recovery as the 

current status quo is much more cost-effective than HTC in 

most cases. It is therefore recommended that research and 

development focus on central cost-efficiency potentials. 

Without the guarantee of economic operation, HTP will most 

likely not be established in Germany. All relevant cost groups 

(production costs, operating costs, investment costs, etc.) 

should be included. According to this study, cost reduction 

potentials lie in the field of process water treatment (for 

HTC), system integrated concepts, and experiences in 

industrial continuous operation (learning effects). In 

procurement, the focus should be on a broad residue base, so 

that decentralised plants (lower transport costs) have 

sufficiently suitable substrates on site. In the sales area, it is 

advisable to first focus on material applications (for example, 

HMF), as the legal framework for energy but also agricultural 

use is currently inhibiting. An area of business is conceivable 

for sewage sludge disposal, but the infrastructure of the 

current incinerators in Germany is not suitable for the solid 

product from HTC. The sale of by-products such as 

phosphorus represents an important revenue potential and 

should be included in potential business models. The actual 

cost and revenue structure for competitive operation is 

dependent on the individual case, with the aforementioned 

cost reduction and revenue potentials representing 

meaningful approaches in most cases. 

Case-

dependent 

Research and 

development, 

plant developers, 

plant operators 

Recommendations for ecological potentials  

The potential environmental benefits of HTP compared to 

reference technologies (e.g. HTG vs. anaerobic digestion) are 

currently not fully known. Therefore, for example, the long-

term stability of the solid product from HTC in the soil (i.e., 

carbon sequestration) cannot be accurately estimated, which 

has increased uncertainty in this area. According to expert 

statements made in the context of this study, the presentation 

of the ecological advantages of HTP is a necessary premise 

for the establishment of this technology in Germany. It is 

recommended that research focus on essential fields of 

ecological potential. Based on the present work, CO2 

reduction potentials are especially conceivable if certain 

substrates are used (e.g. manure, which releases methane if 

not treated). Resource saving potential is conceivable through 

integrated nutrient recycling. 

Medium-term Research 

Recommendations for societal and customer acceptance 

In public perception, HTP currently plays no role in Germany. 

The technology is also little known outside the niche in 

research and development. Hence, potential customers of this 

technology and products (for example, sewage treatment 

plant operators) are not very interested in or open to the 

application of HTP, also because there are still legal, techno-

economic, and environmental uncertainties. It is therefore 

advisable to engage in broader publicity work as soon as the 

ecological and economic advantages compared to reference 

technologies have been proven. 

Long-term Not clearly 

assessable yet 

According to the results of this work, the main focus for the future development of 

HTP in Germany should be in the political-legal and techno-economic fields. First, it 

can be stated that HTP can contribute to resource and environmental protection and 
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has some potential as an efficient biomass conversion technology (e.g., favourable 

greenhouse gas balance through high energy efficiency, resource savings through 

integrated nutrient recycling). However, to date this technology has no promising 

applications in Germany. Evidence from experts suggests that the initial euphoria 

surrounding the technology has declined in recent years, first and foremost due to 

technological barriers in connection with the cost-intensive preparation of the liquid 

phase from HTC. 

In addition, the legal framework for products made from bio-waste and residual 

materials is also a hindrance for development, as it leads to legal uncertainty among 

all stakeholders. The willingness of key stakeholders, such as operators of sewage 

sludge incinerators, to retrofit their infrastructure for disposal of the solid product from 

HTC is currently rather low, even though the mass reduction of sewage sludge by HTC 

under certain conditions can be techno-economically advantageous compared to 

conventional drying processes. Clearly, this potential advantage is currently not 

enough for HTC to prevail in this area. Alternative markets are to be expected in 

material applications (e.g. activated carbon) or substitutes (e.g. platform chemicals 

such as HMF). In contrast, energetic utilisation of the solid product from HTC is 

currently not expected, since the legal uncertainties have an inhibiting effect. It may 

be appropriate to focus on other educts that are not waste-based and that can therefore 

be used both as energy carriers and as fertilisers without any legal obstacles. Based on 

this analysis, an adaptation of the relevant legal framework enabling a legally certain 

energetic use of products from waste biomasses (End of Waste Directive) is unlikely, 

or highly uncertain according to expert feedback. 

In contrast, the development of a cost-effective process water treatment technology for 

HTC in the near future is considered likely, as also indicated by the current research 

on this subject (cf. Reißmann et al. 2018a). However, the modelled case study showed 

that process water treatment should be highly cost-effective if HTC is to become 

competitive in the field of sewage sludge disposal. Even if the results of this study are 

not generalisable, they show how much the cost structure can outweigh other 

advantages (in this case, the performance of process water treatment). It is therefore 

strongly recommended that, in particular, the cost reduction potential for HTP shall be 

identified and used (e.g. waste heat recovery). 

To date, HTL and HTG have only marginally been researched and tested in Germany. 

Since HTC, especially for sludge utilisation, has lost relevance in recent years due to 

the problems noted above, it is recommended that the two other technologies be 

focused on more strongly in the future. The production of liquid and gaseous energy 

products through HTL and HTG could contribute to the heat and fuel sectors. 
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Particularly in the fuel sector, potentials are conceivable with regard to the currently 

intensified ‘Mobilitätswende’ in Germany (e.g. applications in fuel cells). 

Important potentials are also recognisable in system integrated solutions. To leverage 

synergies with other biomass conversion technologies, integrating HTP into bio-

refineries or existing infrastructures (such as waste water treatment plants) is a viable 

option. As a result, for example, the relatively high costs of ‘stand-alone’ solutions can 

be reduced (cf. Kruse & Dahmen 2018). In addition, system integrated solutions have 

the advantage that a combined process water treatment is relatively easy to implement 

(e.g. anaerobic treatment). Nutrient recycling should also be an integral part of such 

applications, as it may represent a significant advantage of HTP compared to 

conventional reference systems. Due to the current legal framework (BMU 2017), the 

recovery of phosphorus is particularly recommended, although other nutrients (such 

as nitrogen) should also be recovered. The high relevance of nutrient recycling for the 

development and efficiency of HTP can be seen in the system analysis, in the high 

weighting of the factor in the context of the AHP, and in the results of the LTA scenario 

analysis at the plant level.  

System integration, cost-effective process water treatment, and nutrient recycling are 

all closely linked to production costs, investment costs, and potential revenue. As 

already mentioned, reducing the total cost per unit is essential to compete with 

alternative and already established technologies. The approaches mentioned above can 

all contribute to this (e.g. through savings in plant infrastructure due to system 

integration, or potential sales of recovered nutrients and other by-products). In 

particular, production costs represent a key metric (e.g. indicated by the high weighting 

of this metric). Based on the assumption that learning effects will increase in the future, 

the production costs could be reduced in such a way that competitiveness can be 

achieved. Paper VI illustrates this with an example case, but further analyses are 

needed for different cases to derive more meaningful recommendations, possibly also 

underpinned by quantitative data. The multi-criteria instrument developed in this work 

can provide a methodological basis for this. 
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Discussion 

This work has identified significant potentials and barriers for the current and future 

application of HTP for the treatment of biogenic residues in Germany. As part of 

various methodological elements, primary and secondary information was structured, 

transparently evaluated, and analysed. The derived key development factors can be 

regarded as meaningful, since they were collected and validated on the basis of several 

information bases. In addition, the survey met certain criteria of scientific quality, 

particularly the representative number of participants in the Delphi survey, the 

consideration of the entire range of influencing factors mentioned in the literature, and 

the structured procedure using established methods, such as a SWOT analysis, fuzzy 

logic, and the scenario technique.  

With reference to the aforementioned studies by Suwelack (2016) and Weidner & 

Elsner (2016), this work provides further insights. The work of Suwelack (2016) has 

been extended due to the holistic evaluation method specifically for HTP, which was 

developed through the involvement of various experts within this work. Integral and 

important components are the weighted evaluation criteria, which were also named by 

Suwelack (2016) as an explicit research gap. The work of Weidner & Elsner (2016) is 

expanded by the scenario analysis carried out in this work. In particular, the structured 

methodology and the inclusion of expertise in addition to secondary literature 

represent important enhancements that make the results of this forward-looking 

analysis more robust. In addition to the potentials also mentioned in Weidner & Elsner 

(2016), this analysis was able to identify important additional factors for future 

developments of HTP, such as the importance of system-integrative concepts. 

Therefore, that no other comparable work - besides the two mentioned studies - is 

known, these findings are to be assessed as novel in this form. 

Nevertheless, the analytical results are not generalisable. The analysis of the effects of 

the HTP scenarios on the overall system exclusively used qualitative information; thus, 

the quantitative information is not based on objective data, but serves to simplify the 

interpretation of the system relationships. In addition, the system analysis focused on 

expert opinions and not on measurements or calculations. It can therefore only be seen 

as a rough estimate and requires further validation (e.g. through further expert surveys 

and workshops). Furthermore, the consideration at the plant level is not generalisable 

and serves primarily to test the technology assessment instrument. Although the results 

allow conclusions to be drawn on the investigated case, they cannot be used to make 

any general statements about sewage sludge HTC in Germany. Hence, further work is 

needed to support these findings (e.g. other case studies and scenarios). To this end, 

the use of the technology assessment tool, whose functionality was proven here, is 

encouraged.  
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4 Conclusion and outlook 

Regarding the main research objective of systematically analyse most important 

potentials and obstacles of HTP development in Germany using a holistic assessment 

approach, and to provide a series of recommendations to foster these potentials and 

reduce barriers for future development, this work has provided useful results. 

The literature review and primary surveys in this work have shown that HTP has the 

potential to contribute to the conservation of resources, as the products from HTP can 

be used for material and energetic purposes and thus can substitute products based on 

non-renewable resources (e.g. petroleum). Referring to the initial hypotheses, it can be 

stated that HTP seem to be suitable as technologies for the efficient utilisation of 

biogenic residues, but above all, political-legal and techno-economic barriers have to 

be eliminated or solved. In particular, the current framework in waste legislation is a 

major obstacle to mobilizing the potential of HTP as an energy source, as HTP 

products are classified as waste rather than as fuel. Accordingly, there is an urgent 

need for adjustment if products from residual materials that have been treated via HTP 

should be available for energetic use in future. In addition to this key legal barrier, 

there is another area of concern in the cost-effective treatment of process water, 

specifically for HTC. In contrast, potentials that should be exploited are reflected in 

integrated nutrient recycling and system integrative concepts, which in turn can save 

costs, which is a key factor in the future success of the technology compared to 

currently more favorable reference technologies. Hypothesis 1 can therefore be 

validated in part, as techno-economic and legal barriers have to be overcome, but 

ecological barriers are currently less relevant.  

While the political-legal factors (e.g. regular fuel recognition) mainly relate to the 

system level, cost and potential savings play an important part in assessing plant-level 

technologies, especially when it comes to making HTP more competitive with 

reference technologies. By means of system integrative solutions that optimally 

contain a nutrient recycling step, costs can be reduced and additional revenue 

generated; therefore, optimisation potential is assumed. Based on the results of this 

work, the sole removal of techno-economic barriers, as formulated in hypothesis 2, is 

not sufficient to enable that the industrial scale application of HTP becomes more 

likely in Germany, as also political-legal aspects play an important role as already 

mentioned.  

However, techno-economic barriers can indeed probably be evaluated in a more 

targeted manner by means of the technology assessment instrument compared to less 

structured assessments (e.g. simple literature reviews), when different application 
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concepts are compared and the corresponding optimisation potential is derived using 

sensitivity analysis. Thus, this confirms hypothesis 3. The test application to sewage 

sludge HTC showed when it becomes possible to compete with the reference 

technology and which HTC concept per se performs best and is to be preferred for the 

evaluation case. Such information can provide more security to technology developers, 

users, and investors, and thus help to reduce barriers. Hence, also hypothesis 4 can be 

validated, at least for this exemplary application case on sewage sludge HTC.  

With regard to the future development of HTP in Germany, it can be stated that key 

factors like learning effects, system-integration, integrated nutrient recycling 

(especially phosphorus), process water treatment and production costs are of very high 

relevance, which confirms hypothesis 5. The multi-criteria evaluation of the scenarios 

showed that only the combination of the best possible development of most of these 

factors (resp. LTA scenario) enables a promising future for HTP in Germany, which 

validates the expectation of hypothesis 6. All other factor combinations seem to be 

hardly successful on system level and for the exemplary plant-level case.  

To sum up, the analysis suggests that HTP, as a resource-efficient technology, 

certainly has potential for the German market and can help support future industrial 

development in this technology segment for greener production. For the energetic use 

of the products, the current legal framework must be adapted, i.e. HTP products must 

lose their waste status. If the German or European legislator does not act here, it is 

assumed that HTP can only establish itself outside Germany or Europe. Although the 

material markets for HTP products also represent an interesting sales option, legal 

obstacles are also evident here (for example, for use as fertilizers). In addition, the 

currently too high cost of producing HTP products is an obstacle, making it difficult 

for the technology to prevail compared to reference technologies and penetrate 

markets. This work has shown this with the example of sewage sludge disposal by 

means of HTC. In particular, research and technology development are in demand to 

develop more cost-efficient solutions. This work indicates potential especially in 

systems-integrative concepts and in nutrient recycling. In addition, cost reductions 

through learning effects in industrial continuous operation are conceivable. The 

treatment of process water from HTC is another important point to solve in the future, 

since the treatment is currently too costly and largely inefficient. Here, also research 

and technology development are primarily addressed. All the other factors identified 

in the context of this work should also be considered, with the above-mentioned ones 

being regarded as essential on the basis of the results of this work and should be 

prioritized by the mentioned addressees. 
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Future research 

Future research that can be derived from this work can be subdivided into 

methodological and content-related emphases. Further research activities that are not 

directly connected to the main issues of this work are presented in Paper I.    

Future research with a methodological focus could entail the following:  

• The transfer and application of the basic methodological elements of this work 

(e.g. derivation system for the technology assessment tool [SWOT approach], 

fuzzy logic analyses for the derivation of scenarios) to other fields of application 

(e.g. for other emerging technologies). 

• The application of the developed technology assessment tool for further analyses, 

for instance in HTG and HTL case studies. 

• The extension of the HTC case study with additional elements, such as additional 

sensitivities to the reference case, to other reference technologies, to criteria 

weightings, to other scenarios, or to other product uses (e.g. platform chemicals). 

This would allow further insights into the potential competitiveness of these 

technologies compared to reference systems, taking into account different 

scenarios and applications. 

• The examination of more scenario combinations to increase the range of potential 

future developments. The target year could also be varied, which would require 

further surveys (for example, expert surveys). The FCM presented here could be 

varied on the basis of various scenario combinations, so that system effects of other 

scenarios become visible. 

• Due to the ongoing evolution of the subject area, it is recommended that the FCM 

be updated regularly, in terms of both the essential factors and their connections. 

For this purpose, further information surveys will initially be necessary. This could 

also increase the validity of the model. 

Apart from this methodological research, further research topics are conceivable, such 

as: 

• The development of cost-effective system integrated solutions for HTP (e.g. 

integration into a bio-refinery). Such solutions should focus in particular on cost-

effective process water treatment and integrated nutrient recycling. 

• Solutions that make the most of cost reduction and revenue opportunities to 

demonstrate techno-economic competitiveness compared to reference 

technologies. 
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• A political and legal debate on development opportunities and obstacles. This is 

urgently needed. To reduce legal uncertainty for affected stakeholders (such as 

plant operators), advisory services (e.g. guidelines) make sense; research can 

provide the basis for this. Based on the assumption that there are no legal 

adjustments in terms of HTP, alternative measures to reduce legal uncertainty are 

valuable, but must also be widely communicated to the relevant target groups (e.g. 

regarding the waste status of HTP products in accordance with the Circular 

Economy Act). 

• Increased research on industrial HTP, for example, to better assess business 

learning effects, economies of scale, and the process behaviour of large-scale 

plants, and to derive optimisation possibilities. A permanently operated industrial 

plant should serve as a research base, but this technological maturity has not yet 

been reached in Germany. 

• Research identifying more promising business areas, business strategies, and 

market potentials (e.g. market analysis, market forecasts, product potential 

assessments), to enable a technological implementation of HTP at the industry 

level. 

• Participation research involving all relevant stakeholders (from farmer to product 

recycler). This is recommended to initiate an overarching dialogue, to reduce 

reservations, and to present the topic more strongly to all target groups (e.g. 

simulation games, real laboratories). 

• Increased research on how to deal with key barriers to reduce uncertainties or to 

exclude unsuccessful strategies (for example, in the area of infrastructural 

restrictions due to existing sewage sludge incineration plants, or impediments to 

the inlet of process water into sewage treatment plants). 

• More research on the implementation of HTL and HTG, especially in Germany. In 

the past there was a focus on HTC, but products from the other two types of 

process, especially in the fuel sector, could be of increasing relevance in the future. 
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Further fields for the application of the developed methods 

The new approach to technology assessment developed in this work was first tested on 

the basis of the comparative assessment of future development paths of sewage sludge 

HTC in industrial continuous operation. It was shown that the proposed assessment 

leads to plausible results and can help to support decisions for appropriate technology 

pathways that create uncertainties in various fields of action (e.g. in the techno-

economic and legal fields). 

First, the technology assessment can also be carried out for HTG and HTL, even 

though the testing in this work exclusively considered HTC. For this purpose, it is 

possible to fall back on the already derived criteria: from the long list, small 

adaptations might be made by selecting the indicators which are necessary for the 

corresponding evaluation. As both the evaluation method and the corresponding 

assessment criteria have already been developed through this work, future similar 

assessments (e.g. for industrial-scale HTG) could be conducted with relatively little 

effort and would support decision-making for promising future developments. It is also 

possible to make use of the already derived scenarios or to create new scenarios (e.g. 

also for other geographical regions than Germany).  

Furthermore, the evaluation process can also be used for real practical cases. For 

example, if an investor is faced with building a large-scale HTC plant in the future and 

has various design options (e.g. regarding process water treatment), this assessment 

method, and particularly the derived criteria and their weightings, can help in the 

decision. This is a central aid for practice, because before this work neither a suitable 

evaluation method nor appropriate criteria existed. 

Furthermore, the methodology presented here is applicable to other emerging 

technologies characterised by similar uncertainties and development barriers as HTP 

(e.g. ambiguity about the most appropriate technical options, as in the case of HTC 

process water treatment). However, the suitability of the criteria developed here cannot 

be immediately guaranteed. They could be tailored to other technologies by following 

the criteria derivation approach (step 2 of the technology assessment procedure) and 

then weighted using AHP (step 3). The other steps of the procedure could be applied 

unchanged. Nonetheless, the derivation of the criteria is complex and requires various 

empirical steps; the question is then in which cases it is suitable to apply this extensive 

procedure. In the case of novel technologies with uncertainties in various fields of 

action for which no evaluation criteria exist yet, it is recommendable to identify such 

metrics and apply them to support specific decision-making actions (e.g. for questions 

on suitable technological options [like process water treatment alternatives in this 

work] for technology funding). 
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To enable a broader application of the developed instrument, it could conceivably be 

transformed into a software tool (e.g. an app). This should be structured in such a way 

that it leads the user step by step through the evaluation process and is thus as easy to 

handle as possible, even for users who have no in-depth knowledge of multi-criteria 

processes. Furthermore, it is essential for this software tool to be designed to be as 

flexible as possible and to allow, for example, the inclusion of further criteria and the 

filtering of existing criteria. With an integrated survey module based on the Delphi 

technique, it would also be possible to adapt the weightings on the basis of the AHP, 

which would then be automatically implemented by the software, for instance by 

asking another panel of experts or by adding new criteria. However, from a current 

perspective, such a transfer into a software instrument only makes sense after the 

instrument has been validated by means of several case studies and has already been 

further developed (for example through further expert surveys on the weightings). 
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a b s t r a c t

A considerable part of especially wet and sludgy biogenic residues is currently not in material or ener-

getic usage in Germany. Therefore, a key issue for current research is to identify which technologies are

most suitable at mobilizing these wet and sludgy materials. Hydrothermal Processes (HTP) appear to be

promising treatment options for moist substrates because they require a high water content of 70%e90%

for optimal processing. This review provides information on the state of the art and knowledge on HTP,

and attempts to determine how suitable these processes are for mobilizing biogenic residues in Germany.

We identified technological, economic, environmental and legal potentials and barriers of HTP using a

modified content-analysis. About 120 relevant references were identified and analyzed using a struc-

tured sampling scheme. The results show considerable advantages of HTP for utilizing wet and sludgy

biogenic residues in contrast to comparable biomass treatment processes. Especially, their high process

energy-efficiency and low Global Warming Potential from a life cycle perspective. Nevertheless, tech-

nological, economic, environmental and legal barriers (e.g. missing data and knowledge on process ki-

netics; missing legal standards) must be taken into consideration. Finally, research needs are illustrated

that must be fulfilled through structured and target-oriented research.

© 2017 Elsevier Ltd. All rights reserved.
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1. Introduction

Biogenic residues from industrial, commercial and municipal

activities are valuable resources. Residues like liquidmanure, straw,

wood residues from the forestry industry, industrial wood residues,

demolition wood, kitchen and garden waste, sewage sludge, and

municipal solid waste, can be utilized in a value-enhancing way

through appropriate technological applications (Leible et al., 2003;

Tr€oger et al., 2013). The German Government already fosters the

material and energetic utilization of biogenic residues by several

programs, initiatives and legal regulations aiming to increase the

resource efficiency of process chains (BMUB, 2016a). Due to

disposal regulations specified through the German Law on Closed

Cycle Management and Waste (KrWG, 2012), most industrial resi-

dues like plant oils and animal fats as well as municipal waste

streams such as food and bio-waste are already being utilized

(Brosowski et al., 2016). Regarding the technical potential -

describing the part of all physically existing biogenic residues for a

certain region and time that is applicable under consideration of

availability, environmental barriers (e.g. erosion), technical feasi-

bility, competing uses and legal requirements (Brosowski et al.,

2016) - approximately 30% is currently used to produce materials

(e.g. compost; fertilizers; cosmetics; pharmaceuticals; bio-plastics)

through mainly chemical and physical conversion processes (cf.

Thr€an and Bezama, 2017; Spiridon et al., 2016; Türk, 2014). A

further 27% of the technical potential is energetically used to pro-

duce electricity, fuels and heat through thermochemical and

biochemical processes (cf. Long and Karp, 2013; Okoro et al., 2017).

However, in addition to the substrates that are already tied to

material and energetic treatment paths, a technical potential of

around 30 million tons of biogenic residues are currently not being

used in Germany (Brosowski et al., 2016). Wood residues, cereal

straw, animal excreta and sewage sludge are particularly often not

in energetic or material use in Germany. Moreover, many biogenic

residues used in thermal processes are not suitable because their

heating value is under 11MJ/kg (Brosowski et al., 2016). In addition,

some treatment paths for biogenic residues have the potential to

increase efficiency through process cascades, i.e. the expansion of

existing process chains through material recovery and recycling

(Bezama, 2016; Thonemann and Schumann, 2016). With this in

mind, the question arises as to whether and how this unused po-

tential can be mobilized, and which processes are most suitable for

this purpose.

Hydrothermal processes (HTP) appear to be a promising tech-

nology platform for processing wet and sludgy biogenic residues.

These technologies use water as their main process medium to

convert biomass into materials and fuels at high pressures and

temperatures. Because a very moist environment is needed to

ensure that the process runs effectively, less energy and thus costs

are required in contrast to conventional treatment paths because

process steps like substrate thickening and drying are not needed

anymore. This makes HTP interesting from an economic and envi-

ronmental point of view (Schindler, 2015). Thus, HTP seem to be a

suitable way to mobilize the wet and sludgy part of the unused

biogenic residues in Germany. However, the novelty of the tech-

nology platform is associated with uncertainties and barriers for

stakeholders (e.g. investment decisions, development of legal

standards, funding decisions etc.). Hence, this review aims to

contextualize HTP based on technological, economic, environ-

mental and legal criteria.

2. Structure of the review and methods

This review follows the sequence illustrated in Fig.1. The process

is oriented on a modified content-analysis with the aim to provide

new insights and enhance the understandability of certain issues

through a structured procedure (cf. Moldavska and Welo, 2017).

2.1. Step 1: Preparation phase

First, the review focus was defined according to the study pur-

pose that is to evaluate the extent to which HTP represent a viable

option for processing currently unused biogenic residues in Ger-

many. Thus, the central focus was set to identify technological,

economic, environmental and legal potentials and barriers of HTP,

to derivate corresponding future research needs and to provide

information on how to fulfill the research gaps. Based on the review

focus, the unit of research was defined as scientific and practical

information on the technological, economic, environmental and

legal potentials and barriers of Hydrothermal Processes as options

for treating biogenic residues in Germany.

Second, a sampling focus including the definition of the time

period, type of documents, information sources and document

languages must be defined. Because the research on Hydrothermal

Processes has gained rising attention since 2000, the period of

consideration was set from 2000 to 2017. A large range of different

document types was included into the review. Particularly, scien-

tific articles and textbooks, presentations on scientific conferences,

conference proceedings, technical reports, legislative texts and

websites written in both German and English. The reason for the

selection of these document types is that current research on HTP

includesmuch applied-oriented research that is often published via

technical reports. Next to this, most recent results are often pre-

sented on conferences or websites before they are published in

scientific journals or textbooks. Thus, these types of documents

should be considered next to scientific articles and textbooks. The

information sources used were Google, Google Scholar, Science

Direct and Scopus.

Third, to identify documents that are most relevant considering

the review focus, we used a sampling scheme (Fig. 2). For every

process step of HTP it was determined which information about the

aspects under consideration (Technology; Economy; Environment;

Legislation) was needed to fulfill the review purpose and thus the

defined focus. Based on suggestions of Thr€an et al. (2013) the most

relevant keywords for each process step and aspect were identified

accordingly.
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The keywords shown in the boxes of the sampling scheme were

used in connection with search words for HTP particularly “Hy-

drothermal Processes”, “Hydrothermal Carbonization”, “Hydro-

thermal Liquefaction” and “Hydrothermal Gasification”. The

following bullet points clarify the search queries:

� “Hydrothermal Processes AND keyword” (e.g. “Hydrothermal

Processes sales”),

� “Hydrothermal Carbonization AND keyword” (e.g. “Hydrother-

mal Carbonization products”),

� “Hydrothermal Liquefaction AND keyword” (e.g. “Hydrothermal

Liquefaction feedstock supply costs”),

Fig. 1. Sequence of the review (adapted from Moldavska and Welo, 2017).

Fig. 2. Sampling scheme to systematically identify the most relevant keywords for document research.
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� “Hydrothermal Gasification AND keyword” (e.g. “Hydrothermal

Gasification by-products”).

The above mentioned search words for HTP were also used

without keywords from Fig. 2 to identify more general documents

on HTP. To reduce the risk that the search strategy applied could

possible exclude relevant documents, an additional test research

with more detailed keywords was applied. The words used for this

were biogenic residues, municipal waste, sewage sludge and ani-

mal excreta. For the test search queries the mentioned words were

also connected to the search words for HTP (cf. above mentioned

bullet points). In result, the authors claim that the search strategy

includes the most relevant documents because also through the

test research mostly these documents were identified.

2.2. Step 2: Evaluation phase

Through the keyword research about 120 relevant references

were identified and analyzed, whereby not all of them are cited in

this article because some information were part of various docu-

ments. Every document was carefully reviewed according to the

search focus (i.e. the used keyword) and the underlying category

(Technology; Economy; Environment; Legislation).

2.3. Step 3: Interpretation phase

Based on the results of the review process, potentials and bar-

riers to HTP for mobilizing the unused technical potential in Ger-

many were identified and interpreted. Finally, future research

needs and suggestion to fulfill these needs were derived.

3. Results

3.1. Technological issues of Hydrothermal Processes

3.1.1. Suitable feedstock, feedstock pretreatment and biomass

potential for HTP in Germany

The water content is a key parameter for an efficient hydro-

thermal processing (Greve et al., 2014). An organic dry matter

content of less than 30% is generally recommended (Greve et al.,

2014; Libra et al., 2011; Ramke et al., 2012). However, the dry

matter content of the substrate is themost important parameter for

optimizing the desired product output per hour and invested

monetary unit because the production rate of the desired output

(coal, oil, gas) is proportional to the amount of biomass feed in

(Vogel, 2016). Based on this, the suitable organic drymatter content

should range between 10% and 30%.

To reach high product mass and energy yields, lignocellulose

residues (e.g. corn stalk and dough residues) are very suitable for all

HTP types (Kong et al., 2008; Libra et al., 2011; Oliveira et al., 2013;

Xiao et al., 2012) whereby algae is the most suitable input for Hy-

drothermal Liquefaction (HTL e described in section 3.1.2.) (Zhang

et al., 2015; Zhu et al., 2013). Generally, no expensive pretreatment

is necessary when using the mentioned substrates in HTP. The only

exception is that relatively solid substrates (e.g. stalks) must be

sufficiently shredded into smaller particles to ensure uninterrupted

pumping (Hoffmann, 2014). Based on the mentioned requirements,

technical feasibility, structural conditions, ecological issues and

social priorities, Brosowski (2015) calculated that Germany has a

technical biomass potential for HTP of 16.8 million tons of dry

matter. This includes 9.1 million tons of animal excreta, 5.7 million

tons of sewage sludge and 2.0 million tons of stalk landscaping

materials (Brosowski, 2015).

3.1.2. Parameters and process designs that influence the process

Different types of hydrothermal processes occur depending on

pressure, temperature and residence time which is why these re-

action parameters are crucial (Greve et al., 2014; Kruse et al., 2013;

Peterson et al., 2008). Table 1 shows the typical ranges of these

parameters for the main types of HTP: Hydrothermal Carbonization

(HTC), Hydrothermal Liquefaction (HTL) and Hydrothermal Gasifi-

cation (HTG), with its sub-reactions catalytic/low-temperature

(subcritical conditions and addition of heterogeneous catalysts)

and non-catalytic/high-temperature (super-critical conditions with

addition of homogenous catalysts) processes (Elliott, 2008). The

parameters are compared to anaerobic digestion as reference

biomass conversion process.

Even though much higher temperatures are needed for HTP, the

reactions are considerably faster than for the anaerobic digestion

process. In addition to process parameters, the catalyst (Guo et al.,

2013; Katarzyna et al., 2016; Kong et al., 2008), heating velocity

(Katarzyna et al., 2016), solvent (Xiao and Guo, 2006), substrate

solid ratio (Dandamudi et al., 2016) and pH value of the feed (Funke,

2012) have a significant impact on the efficiency of the process and

the characteristics of the products. Several studies mention a sub-

stantial catalytic effect of potassium chloride, citric acid (HTC), al-

kali carbonate, alkali hydroxide (HTL, HTC) and nickel (HTG) on the

processing efficiency (Guo et al., 2013; Klemm et al., 2012; Kong

et al., 2008). An optimized calibration of these parameters is rec-

ommended in order to ensure a high-quality product (e.g. high

calorific value, low pollution level, high nutrient content) and an

efficient process. Table 2 lists some calibration examples for tem-

perature, pressure and residence time of specific process designs.

It should be noted that the suggestions mentioned in Table 2 are

only valid for the specific process example under consideration and

general recommendations have yet to be developed. To get a gen-

eral impression of the efficiency of typical hydrothermal processes,

Table 3 shows process efficiency ranges for HTC, HTL and HTG

compared to thermochemical and biochemical biomass conversion

processes. Here, process efficiency is based on the yield of the

desired product in relation to the total dry matter feed in.

Currently, the most common types of HTP processing systems

are batch reactors and continuous-flow operating systems,

whereby multi-batch systems are also used (cf. Badoux, 2011).

Commonly used reactors are stirring tanks, barrels and tube re-

actors. Most plants operate as demonstration or pilot plants. The

Table 1

Typical temperatures, pressures and residence times for the main types of HTP (Data from (1) Boukis et al., 2003; (2) Kruse et al., 2013; (3) Peterson et al., 2008; (3) SEAI, 2016;

(4) Vogel, 2016).

HTP type Temperature range Pressure range Typical residence time range

HTC e Hydrothermal Carbonization 160e250 �C (2) 10e30 bars (2) 1e72 h (4)

HTL e Hydrothermal Liquefaction 180e400 �C (2) 40e200 bars (3) 10e240min (1)

HTG e Hydrothermal Gasification

Catalytic/low-temperature 350-450 �C (4) 230-400 bars (3) <10min (4)

Non-catalytic/high-temperature >500 �C (4) 230-400 bars (3) <10min (4)

Reference process: Anaerobic Digestion 32-65 �C (3) ambient pressure (3) 35-80 days (3)
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sewage sludge-based HTC process “SlurryCarb”

(GlobalWaterAdvisors, 2017) is the most advanced type of HTP so

far with the largest plant (located in Rialto, California, U.S.) con-

verting about 180,000 tons of biomass fresh matter into HTC-coal

per year (Bolin et al., 2007).

3.1.3. Products, product use and by-products

All of the HTP types produce solid, liquid and gaseous outputs

whereby there is usually one intended output depending on the

type of process used. The desired output of HTC is solid hydro-coal/

HTC coal and bio-char. It can be used as a fuel (HTC coal), fertilizer

and soil conditioner (bio-char). The liquid bio-crude or HTL oil is

the main product of HTL which can be used as a bio-fuel and as a

substitute for crude oil in chemical products like cosmetics. HTG

mainly produces platform chemicals and bio-fuels based on a mix

of hydrogen and methane (HTG product gas) (Kruse et al., 2013).

Most HTP products are used for energetic purposes, e.g. as sub-

stitutes to lignite, crude oil or natural gas (Vogel, 2016). Thus, the

calorific value of the products is crucial. The following illustration

shows typical ranges (minimum to maximum) of calorific values of

HTC coal and HTL oil compared to conventional fuels. Because there

is no robust data for HTG product gases, they are not included in the

graph.

Most current applications refine the raw HTL oil afterwards

through up-grading processes. This attains a higher quality which is

comparable to conventional fuel. For example, HTL oil achieves a

calorific value of 46.86MJ/kg through hybrid processes that

combine several up-grading variations (Ramirez et al., 2015). Based

on calorific values, HTP products appear to be able to compete with

conventional fuels. HTC coal even achieves higher calorific values

than raw lignite. In addition to using HTP products for energetic

purposes, also other fields of application for HTP products are

conceivable. For example, the use of hydro-coal/bio-char as a soil

conditioner with integrated carbon sequestration in the soil ap-

pears promising (Chan et al., 2007; Glowacki, 2015), but also

problems due to adverse effects on plant growth must be consid-

ered (Rillig et al., 2010). Using hydro-coal as soil amendment, as

much carbon content as possible should be transferred from the

feed into the hydro-coal. Generally, this varies between 70% and

75% by weight (water and ash free) which is already a considerably

high value. Taking into account that a high carbon content is also an

indicator of a high calorific value, these two values of hydro-coal

should be maximized (Ramke et al., 2012; Vogel, 2016).

Although a high number of primary carbon is transferred to the

hydro-coal, a considerable proportion is split off to the process

water. The process water is therefore highly loaded with carbon

and other organic compounds (especially nitrogen and phosphate)

and e in particular if sewage sludge is utilized - with heavy metals,

pathogens and pharmaceuticals that are split off out of the sludge

(Ohlert, 2015). Table 4 shows the sum parameters for the organic

contamination of HTC process water.

Solutions are currently being sought for the most efficient way

to treat the process water. Discharging the process water into a

wastewater treatment plant (WWTP) seems to be a simple solution.

However, several batch experiments have shown that the COD

values are permanently too high for the process water to be simply

discharged in the wastewater regarding current legal thresholds.

MostWWTP operators do not allow process water to be discharged

since thresholds can be exceeded. Due to this, some studies have

already investigated pretreating the process water before dis-

charging it. Wet oxidation and membrane processes achieved

promising results for reducing pollution and thus the TOC value (up

to 74%). That means that after the pretreatment of the process

water a discharge into a WWTP will be possible (Loewen, 2013;

Ohlert, 2015; Ramke et al., 2012; Reza et al., 2016; vom Eyser

et al., 2015; Weiner et al., 2013). Another way to reduce the

organic content of the process water is to separate out phosphorus.

A positive side effect is that the sequestered phosphorus can be

used as a fertilizer. However, such procedures have currently a low

feasibility which is why they are not widespread (Remy and Stüber,

2015; Vogel, 2016).

An undesired process water also occurs during HTL although it is

usually less polluted than the process water of HTC. After catalytic

liquefaction (CatLiq), the TOC of the HTL process water is about

3300mg C/L which is considerably less critical than the TOC of the

Table 3

Process efficiencies of HTP types compared to thermochemical and biochemical biomass conversion processes.

Conversion type Process Process efficiency (%) References

Biomass to coal Slow pyrolysis (pyrolysis coke) 35 Ronsse et al., 2013

Torrefaction 75 Ronsse et al., 2013

HTC 70e90 Klemm et al., 2012

Biomass to liquid Flash pyrolysis (pyrolysis oil) 65e75 Klemm et al., 2012

HTL 70e86 Klemm et al., 2012

Biomass to gas Gasification 54e58 Duret et al., 2005

Anaerobic digestion 25e71 Weiland, 2010; Yoshida et al., 2003

HTG 68e85 Klemm et al., 2012

Table 2

Examples for the optimal calibration of temperature, pressure and residence for HTC, HTL and HTG.

Process example Temperature

(�C)

Pressure

(bar)

Residence time

(sec)

References

Batch HTC with fermentation residues aimed at high nutrient contents in HTC-char 220 2 14400e28800 Brookman et al., 2016

Batch HTL with waste furniture sawdust aimed at maximum bio-oil yield 280 10 900 Jindal and Jha, 2016

Continuous HTG with glucose in sub- and supercritical water aimed at high product gas

yields

>480 340 4 Klingler and Vogler,

2010

Table 4

TOC, COD and BOD5 values of process water from HTC (Data from Escala et al., 2013;

Ramke, 2011).

Sum parameter Range of concentration in HTC process

water

Total Organic Carbon (TOC) 9000e36,000mg C/L

Chemical Oxygen Demand (COD) 24,200e68,500mg O2/L

Biochemical Oxygen Demand

(BOD5)

10,000e42,000mg O2/L
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HTC process water. The gaseous phase that occurs during HTL

mostly consists of carbon dioxide (~95%) and traces of nitrogen,

hydrogen, carbon oxide and methane. Depending on the process

design (e.g. hydrofaction, hydrothermal upgrading) 18%e40% of the

feed-in dry matter is split off to the gaseous phase. The carbonized

organic solid material, which is another by-product of most HTL

processes, is often suspended in the HTL oil. Adding alkaline salts

can reduce the proportion of this solid phase (Vogel, 2016).

Undesired by-products of HTG include salts and minerals that

are part of most feedstock. Most HTG designs do not separate out

these materials during the process so that they occur later as an

output in the process water. During processing, they often disturb

the functionality of the catalyst. Some applications try to separate

the salts and minerals during the process, however this is complex

because of the phase reactions of the salt-water-organics mix

(Müller, 2012; Schubert et al., 2010).

3.2. Economic aspects of Hydrothermal Processes

3.2.1. Feedstock supply costs
HTP feedstock supply costs consist of feedstock prices, logistic 

costs (collection; transport; storage) and feedstock preparation 
costs (drying; thickening; crushing; pressing etc.) (U.S. Department 
of Energy, 2014a,b; Zhu et al., 2013). In terms of the technical 
biomass potential of HTP in Germany, the feedstock prices of the 
potential substrates - animal excreta, sewage sludge and stalk 
landscaping materials - are considerably low because these sub-
strates are residues that must be disposed of in most cases, because 
of legal requirements like the European Waste Framework Directive 
(EU, 2008). Studies have estimated average feedstock prices for 
these substrates. Leuer (2008) calculated an average feedstock price 
for animal excreta in Germany of between 2.17 and 2.82 EUR/ton of 
fresh matter. Because sewage sludge must be disposed, WWTP 
operators are potentially willing to pay for this. HTP is one potential 
disposal path. Therefore, instead of incurring costs, additional in-
come (disposal costs for plant operators) can be generated by uti-
lizing sewage sludge. However, this is not common practice in 
Germany so far, which is why a potential revenue - which usually 
varies between 8.00 and 12.00 EUR/t of fresh matter (Schumacher 
and Nebocat, 2009) - cannot be calculated. Usually, stalk 
landscaping materials can be used without cost incurrence 
because no functioning market for such materials exists in Ger-
many (Menzel, 2015). It should be noted that these numbers are 
relatively old and further investigations are recommended to 
generate current data on these prices. Pretreatment and condi-
tioning only seem to be necessary for stalk landscaping material. It 
is essential to shred the material into small enough particles so that 
the substrate can be effectively pumped into the plant. Assuming 
that the preparation costs for landscaping materials used in HTP are 
similar to those used for biogas production, they range between 
4.50 and 5.60 EUR/ton of fresh matter depending on costs for 
personnel (Leible et al., 2015).

3.2.2. Investment and operating costs

Investment costs (building; equipment; site development) and

operating costs (operating material costs; staff costs; maintenance

costs; insurance costs) highly depend on the individual business

case. Influencing factors can be plant location, composition of the

substrates used, scale of the plant, energy and mass balance of the

process (especially the proportion of process water related to the

product output), process design and calibration of process param-

eters (AVA CO2 Schweiz AG, 2012; Eberhardt et al., 2011; U.S.

Department of Energy, 2014a,b). The process energy balance

significantly influences the energy costs - an important part of the

operating costs (Buttmann, 2011; Kruse, 2008). Three important

aspects must be considered:

(1) The amount of heated water: To reduce the energy that is

necessary to heat the water, using substrates that have a dry

matter content of around 20e30% is recommended (Greve

et al., 2014).

(2) The loss of energy through dissolved by-products: To reduce

this loss, a maximum amount of the process water must be

recovered and later used for energetic purposes (for

example, when process water was used in biogas plants

there was a 19% gain in energy efficiency compared to the

reference state) (Greve et al., 2014).

(3) The exothermic process conditions: To increase the overall

energy efficiency, a maximum amount of waste heat must be

used during the process. Current studies have shown that up

to 90% of the required process heat can be supplied through

waste heat (Greve et al., 2014; Kruse, 2008; Remy and Stüber,

2015).

Estimating the investment and operating costs for large-scale

HTP plants in Germany is difficult because there is a lack of expe-

rience with such installations (Vogel, 2016) even that some sce-

narios for large-scale HTC plant concepts already exist (Child, 2014).

Hence, some calculations for these cost components are available.

Fig. 4 shows the overall investment costs and annual operating cost

calculation for sample case studies compared to conventional

reference systems.

In terms of investment costs, large-scale plants have lower costs

per ton of dry matter biomass input, which is attributed to econ-

omies of scale (Carlino, 1978). No such connection can be drawn for

operating costs because they are comparable in both the smallest

plant (5000 t/a) and the largest plant (80,000 t/a). Fig. 4 shows that

the investment and operating costs of different HTP cases

(explained in Table 5) appear to be able to compete with conven-

tional technologies.

3.2.3. Transport and distribution costs

Distribution costs occur when the HTP products are moved to

resellers and customers. Cost components may include ware-

housing costs, transport and logistic costs, or reclamation costs

(Springer-Gabler, 2017). The costs are highly dependent on the

individual business case and difficult to assess in general. The

transport costs have a significant influence on the overall process

chain economy. In general, the distance between the location of

where the substrate occurs, HTP plant, and the location of the

customer is proportional to the increase in transport cost

(Eberhardt et al., 2011). The main cost components are staff costs

(40e50%), capital costs, energy/fuel costs and costs for mainte-

nance and insurance (10e20% respectively) (Gasafi et al., 2008).

Fig. 3. Maximum and minimum calorific values of HTC coal and HTL oil compared to

raw lignite and crude oil in MJ/kg. (Data from Cerbe et al., 2008; GRENOL GmbH, 2012;

Herrmann and Weber, 2011; Ramke et al., 2009; Vogel, 2016).
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Costs for transporting the HTP products (HTL coal, bio-char, HTL oil,

HTG gas) to the customer are directly linked to the transport vehicle

used (e.g. fuel consumption), the transport distance, the time for

loading and unloading, the density of the product (kg/m3), and the

volume of the transport container (m3) (Eberhardt et al., 2011).

3.2.4. Sales

The sales markets for HTP products are diverse and include

energy production, fertilizing and soil conditioning, chemical pro-

duction, and material applications. Based on the focus of most

research projects (Ardissone and Steurer, 2015; Berge, 2015;

TerraNova energy GmbH, 2011; Zhengang et al., 2012) and the

main products of current installations in practice for all HTP

products, the market for energy production seems to be the most

promising. Themarket for soil conditioners is also highly significant

for the HTC product bio-char (Glowacki, 2015). Experts estimate

also a high potential of HTC products for material applications in

future (Titrici et al., 2012; Wirth, 2017).

In energy production, HTP products can be sold to power plants

(e.g. fuels) and to industry (e.g. co-incineration). The income from

the sale of these products is enhanced by the additional savings

that arise from the fact that no emission allowances are necessary

for these fuels. However, it must be examined whether energetic

HTP products can be utilized within the existing plant and industry

infrastructure, or whether reconstruction measures are necessary

(Eberhardt et al., 2011). The most important factor for most po-

tential HTP fuel product users is the price (production costs plus

profit margin) of the HTP fuel compared to conventional fossil or

biogenic fuels. Fig. 5 shows some examples of the production costs

of different HTP fuels based on specific plant concepts compared to

average fossil fuel production costs (data from Zeymer et al. (2015))

including additional prices for emission allowances and biogenic

synthetic natural gas (bio SNG data from Billig (2016)). The pro-

duction costs are based on all previously described cost compo-

nents whereby the investment costs are calculated using the

equivalent annual cost method (cf. Edge and Irvine, 1981). Table 6

describes the HTP plant concepts.

Currently most energetic HTP products are more expensive in

production costs than conventional fossil alternatives. This is due to

the novelty of the technology platform and lack of experience with

large-scale applications (e.g. absence of learning curve effects).

However, it has been noted that production can compete with Bio-

SNG. The markets for soil conditioners are also highly relevant to

HTC because bio-char can be used for this purpose. The production

costs for HTC char lie between 75 and 100 EUR per ton, which is

comparable to conventional soil conditioners like peat (Top Agrar

Online, 2011).

3.3. Environmental issues of Hydrothermal Processes

The Life Cycle Assessment (LCA) is the most common method

used to analyze environmental effects including greenhouse gas

emissions (GHG), toxicity, or eutrophication along the entire pro-

cess chain (see the illustration of the process chain in Fig. 2). Also

several LCA have been carried out with respect to HTP (e.g. Ahamed

et al., 2016; Benavente et al., 2017). To illustrate this, Fig. 6 shows

LCA results for greenhouse gas emissions (GHG) of specific HTP

concepts compared to conventional reference systems. Table 7

briefly describes the specific concepts, i.e. HTC using green-waste,

HTL using microalgae and HTG using manure as substrate.

Fig. 4. Investment costs (no annuity) and annual operating costs in EUR per ton of fresh matter biomass input for HTP sample plants compared to conventional reference plants

(Data from AVA CO2 Schweiz AG, 2014; Glatzner and Friedrich, 2015; TerraNova energy GmbH, 2011; U.S. Department of Energy, 2016).

Table 5

Case studies representing sample investment and operating costs of HTP plants.

Case study/reference case Substrates Plant scale Reference

Case 1: AVA-CO2 commercial HTC plant Sewage sludge with 25% dry matter content 80,000 t/a AVA CO2 Schweiz AG (2014)

Case 2: TerraNova energy pilot HTC plant Sewage sludge with 20% dry matter content 5000 t/a TerraNova energy GmbH (2011)

Case 3: Modeled HTL and integrated catalytic hydrothermal

gasification (CHG) plant

Sewage sludge with 12% dry matter content 36,500 t/a U.S. Department of Energy (2016)

Reference 1: Commercial sewage sludge mono-incineration plant Sewage sludge with 25% dry matter content 30,000 t/a Glatzner and Friedrich (2015)

Reference 2: Commercial biogas plant Corn silage with 32% dry matter content 9000 t/a TerraNova energy GmbH (2011)
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The GHG balances of the sample HTL and HTG concepts seem

especially promising because they are in fact even negative. In the

case of HTL, carbon dioxide binds to algae during the growth phase

generating additional GHG credits. In addition, the process water

fromHTL contains ammonium and phosphate which can be used as

a growing medium for algae. This makes mineral growing media

superfluous and cuts out additional emissions. Furthermore, the

gaseous by-product of HTL (especially hydrogen and methane) is

simultaneously combusted to improve the energetics of the system,

which saves even more greenhouse gases (Bennion et al., 2015).

However, other studies have shown that the installation and use of

infrastructure equipment, like HTL upgrading technology, creates a

significant energy burden which is very relevant for the overall

environmental impact (Ramirez et al., 2015; U.S. Department of

Energy, 2014a,b).

In the case of HTG, the high potential for GHG savings is mainly

the result of the use of manure, which is a problematic biomass

when it comes to greenhouse gas emissions. Manure emits nitrous

oxide, which has a global warming potential that is 310 times

higher than that of carbon dioxide. Hence, a considerable amount of

GHG is saved through the treatment of this biomass as part of the

HTG process (Luterbacher et al., 2009).

HTC has a high potential for additional carbon credits by binding

carbon to soil using bio-char as a soil conditioner. When indirect

effects are also taken into account (e.g. decreased GHG emissions

due to a lower production of mineral fertilizers), the overall carbon

mitigation potential increases further. According to recent research,

the most influential factors for the potential of bio-char to mitigate

carbon include the amount of carbon applied with char, additional

soil organic carbon, and indirect carbon credits (e.g. the need for

fewer mineral fertilizers which is also relevant for other HTP

products due to nutrient recovery from process water) (Libra et al.,

2011; Luterbacher et al., 2009). However, the long-term stability of

hydro-coal in soil has yet to be sufficiently investigated.

When bio-char is added to the soil, CO2, N2O and CH4 soil

emissions must be taken into consideration. N2O emissions are

reduced after the application of the char (Lehmann, 2007; Singh

et al., 2010; van Zwieten et al., 2010). CO2 soil emissions are also

lower (Lehmann, 2007; Lu et al., 2012; Singh et al., 2010; van

Zwieten et al., 2010). In contrast, higher emissions of methane

were recorded after bio-char was added to soil (van Zwieten et al.,

2009).

In addition to GHG emissions, environmental impact issues, like

acidification, human-toxicity, eco-toxicity, and resource depletion

or eutrophication, are important if there is to be a holistic assess-

ment of the environmental burden connected with the processes,

products and services (Berge et al., 2015; Krebs et al., 2015; Lu et al.,

2012). For example, a study of Berge et al. (2015) focusing on food

waste HTC (275 �C, 16 h and 32% dry matter content) concluded

that hydro-coal combustion has the most beneficial influence on

Fig. 5. Production costs in EURct/kWh of sample HTP energetic products compared to conventional fossil and biogenic energy products (Data from Hallesche Wasser und

Stadtwirtschaft, 2015; U.S. Department of Energy, 2009; U.S. Department of Energy, 2014a,b).

Table 6

Characteristics of HTP plant concepts as examples for HTP production costs.

Plant concept HTC 1 (present) HTC 2 (present) HTL (modeled) HTG (modeled)

Substrates Municipal bio-waste Fermentation residues Chlorella algae Corn stover

Plant scale 2500 t/a 2500 t/a 489,100 t/a 858,480 t/a

Additional product

treatment steps

Pelletizing and packaging Free heat delivery Including HTL-oil

upgrading step

Pretreatment and hydrolysate

conditioning of substrate

Product HTC coal dust HTC coal dust HTL oil of fuel quality Synthetic Natural Gas (SNG)

References Hallesche Wasser und

Stadtwirtschaft (2015)

Hallesche Wasser und

Stadtwirtschaft (2015)

U.S. Department of Energy

(2014a,b)

U.S. Department of Energy (2009)

Fig. 6. Carbon dioxide equivalent per mega joule of sample HTP concepts compared to

conventional reference systems (Data from Bennion et al., 2015; Hallesche Wasser und

Stadtwirtschaft, 2015; Luterbacher et al., 2009).

D. Reißmann et al. / Journal of Cleaner Production 172 (2018) 239e252246



the environmental impact (GWP: �99%, acidification: �93% and

human-toxicity, non-cancer: �38%) when compared with the use

of conventional lignite. In contrast, the process water emissions

have the most adverse environmental impact (>60% for human-

toxicity, eco-toxicity and freshwater eutrophication). Krebs et al.

(2015) evaluated the overall environmental burden of sewage

sludge HTC on an industrial scale and show that the process is

environmentally promising under specific conditions. These

include when waste heat or other local renewables are used in the

processing, phosphorus and nitrogen content is reduced in the

process water, phosphorus is recovered, HTC coal is used as a

substitute for fossil fuels and HTC replaces sewage sludge drying

that uses conventional fuels. Most studies generally conclude that

HTP has a considerably lower Global Warming Potential (GWP)

than comparable conventional fossil and biogenic processes (Berge

et al., 2015; Clarens et al., 2013; Krebs et al., 2015; Lehmann, 2007;

Ramirez et al., 2015; U.S. Department of Energy, 2014a,b).

3.4. Legal issues surrounding Hydrothermal Processes in Germany

3.4.1. Legal regulations affecting feedstock supply

When examining the suitable HTP feedstock available in Ger-

many (animal excreta, sewage sludge and stalk landscaping mate-

rials), the utilization of sewage sludge, in particular, is subject to

strict regulations. An amendment to the German Sewage Sludge

Ordinance (Kl€arschlammverordnung (AbfKl€arV)) means that the

thresholds for agricultural utilization of sewage sludge were

tightened, resulting in the loss of a central line of business for many

sewage sludge disposal companies. According to this amendment,

only sewage sludge from WWTP with a maximum of 50,000

inhabitant-equivalents may be used for agricultural purposes

(BMUB, 2016b). In addition, the thresholds of the German Fertilizer

Ordinance (Düngemittelverordnung (DüMV)) already impede

agricultural usage for some forms of sludge (DüMV, 2012; Greve

et al., 2014; Libra et al., 2011). Hence, Germany is currently ur-

gently in need of new, sustainable ways of treating sewage sludge.

For instance, co-incineration is not promising for the utilization of

sewage sludge because of unavailable capacities of appropriate

technical facilities for this purpose in Germany and the release of

phosphorous during the incineration process (Glowacki, 2015).

Though the new sewage sludge ordinance regulates phosphorous

recycling of sewage sludge that exceeds certain phosphorous

thresholds, the co-incineration of sludge with high P-values is

nevertheless permitted (Greve et al., 2014). Therefore, only a few

sewage sludge treatment options remain. Incineration is a suitable

energetic treatment option but the energy efficiency is low as a

result of an energy-intensive pretreatment process (thickening,

drying) of the sludge.With this in mind, HTP seems promising from

a legal perspective.

The use of animal excreta through biomass conversion processes

has been promoted for several years through regulations like the

German Renewable Energy Act (EEG, 2017). Even though the

funding schemes of this regulation has been on applied to

anaerobic processing, these efforts have shown there is a legal

intention to sustainably process animal excreta.

Stalk landscaping materials are defined as bio-waste according

to the German Law on Closed Cycle Management andWaste (KrWG

x 3 sec. 7 no. 2). This legal scope can be disregarded if the stalk

landscaping material consists mostly of logs and huge knots that

are used for energetic purposes. However, landscaping material

that is suitable for HTP does not fulfil these requirements (Kehres,

2012).

3.4.2. Process and plant standards

Most HTP applications currently operate as pilot or demon-

stration plants (cf. Boukis et al., 2005; Boukis et al., 2008; Remy

et al., 2013). Furthermore, there is a wide range of potential pro-

cess designs and the optimal calibration of process parameters and

other important influencing factors are currently not fully known.

This explains why process or plant standards for HTP do not exist so

far (Greve et al., 2014). However, they need to be developed in order

to reduce uncertainties for technology investors and policy makers

(e.g. for funding decision and legal regulations) as well as to

enhance the acceptance for the technologies in society.

3.4.3. Product quality standards and product authorization

Standardizing the product quality is highly relevant to increase

legal certainty for HTP stakeholders, especially product user,

because HTP products become comparable to each other and to

other similar products through this. Hence, quality standards gov-

erning feedstock, production conditions, product composition and

physical, chemical and biological characteristics are already in

discussion (Libra et al., 2011). Efforts are already underway to

establish quality standards for the use of bio-char as a soil condi-

tioner (e.g. from HTC). The guidelines on the production of bio-char

(European Biochar Certificate), which were developed in 2012,

define them as materials used for sustainable agriculture produced

through pyrolysis with an oxygen content of less than 2% and at

temperatures of between 350 and 1000 �C (EBC, 2012). Any bio-

char that is not a product or co-product of pyrolysis is regulated

as waste in accordance with the European Waste Framework

Directive (2008/98/EC). In addition to the European regulations,

potential bio-char applications must also be in accordance with

national legislation that often defines threshold limits for bio-char

based on specific substrates (e.g. sewage sludge). However, the EBC

is an initiative and has yet to be officially implemented by European

legislation (only Switzerland has officially implemented the EBC).

The lack of legislation needs to be clarified before a bio-char market

can be implemented (Montanarella and Lugato, 2013). In Germany,

the German Fertilizer Ordinance (Article 4 Appendix 2 in connec-

tion with Table 7 DüMV) regulates the use of bio-char as a soil

conditioner. HTP products are not listed as products according to

DüMV, complicating their admittance as soil conditioners. Because

no robust data and information regarding the long-term stability of

hydro-coal in soils is available, it seems very unlikely that hydro-

coal will be allowed to be used as a regular fertilizer in line with

Table 7

Characteristics of HTP plant concepts as examples for HTP greenhouse gas emissions.

HTP

type

Substrate System scope Reference system References

HTC Green-

waste

Green waste from green fields/ feedstock supply/HTC processing/ pelletizing of HTC

coal/ transportation and incineration in a 30 kW pellet stove/ heat

Heat generation through

natural gas boiler

Hallesche Wasser und

Stadtwirtschaft (2015)

HTL Microalgae Algae growth/ dewatering/HTL processing/ bio-oil stabilization/ conversion to

renewable diesel (upgrading)/ transport and distribution/mobility

Conventional diesel Bennion et al. (2015)

HTG Manure Manure preparation and conditioning (ultrafiltration)/HTG processing/ production of

SNG/ heat and electricity

Anaerobic digestion Luterbacher et al. (2009)
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DüMV anytime soon (Greve et al., 2014).

Fuels based on sewage sludge are defined as waste in Germany

because of the high level of contamination of the raw material.

Thus, they can only be used in waste incineration plants or waste

co-incineration plants in accordance with the 17th Federal

Emissions Control Act (BImSchV). This is a legal issue because

fuels from HTP are also not defined as products according Section

3(1) of the first BImSchV and are legally regarded as waste. Hence,

energy-intensive companies have no demand for such fuels

because they cannot use them in conventional plants as substitute

fuel (Gawel et al., 2015). However, based on Section 5(1) of the

German Law on Closed Cycle Management and Waste (KrWG), bio-

based fuels from substrates that are not contaminated with pol-

lutants can be used as fuels. Therefore, the legal barriers are highly

relevant, especially for fuels based on sewage sludge. European

legislation initiatives have already tried to change the legal basis for

fuels based on sewage sludge. Recommendations for changing the

EU Waste Framework Directive have been put forward including

the suggestion of allowing sludge-based fuels that have undergone

treatment in a refinement process (2008/98/EC).

4. Discussion

4.1. Potentials and barriers for HTP in Germany

Based on the information of the previous sections, the following

key potentials and barriers were identified as shown in Table 8.

4.2. Future research needs

Future research is necessary to solve fundamental problems

(highlighted in red in Fig. 7) and to foster the most important po-

tentials (highlighted in green in Fig. 7). Fig. 7 provides an overview

of all relevant research areas (according to Fig. 2) and connects

them to the current state of knowledge based on the information in

the review. Fundamental research is necessary for the research

areas categorized in red whereby application-oriented research is

recommended for the areas marked green. Further research is

recommended for the areas marked amber but they have a lower

priority than the other two areas.

Especially, the research gaps that are highlighted in red need a

special attention because fundamental research is still necessary

for them. To fulfil these gaps, knowledge building is most impor-

tant. For example, for the treatment of by-products like polluted

process water several solution exist as shown in section 3. How-

ever, to identify the most optimal solution or combination of so-

lutions it will be necessary to develop theoretically based decision

making tools as well as to enable a practical in-field application to

verify if the theoretically selected solutions are also operational.

Such processes need the involvement of several stakeholders (e.g.

technology developers, technology user, product users, retailers,

policy makers, researchers) that must share experiences and

knowledge.

5. Conclusion

Hydrothermal Processes are an appropriate technology platform

for mobilizing currently unused biogenic waste residues in Ger-

many, however several technological, economic, environmental

and legal questions have to be considered as Table 8 and Fig. 7

show. HTP are promising regarding their ability to mobilize wet

and sludgy biogenic residues that are currently unused and partly

subject to disposal pressure (e.g. sewage sludge). Furthermore, HTP

products are able to compete with conventional reference products

in terms of their calorific value (energy production) and carbon

content (fertilizing). Their advantages include being notably more

efficient than other technologies that use wet substrates, having

the potential to provide an additional biotechnology for existing

treatment facilities, and having a lower climate footprint than

comparable technologies. However, barriers still exist which could

Table 8

Potentials and barriers for HTP in Germany.

Potentials Barriers

Technology

� Mobilization of unused wet and sludgy biogenic residues

� Faster processing than other biogenic treatment options

� Process efficiency higher than conventional biogenic treatment options

(Table 3)

� Calorific values of energetic HTP products are competitive with conventional

fuels (Fig. 3)

� High carbon content in hydro-char

� Parallel phosphorus recycling from process water

� Combination of HTP and wastewater treatment plants (e.g. use of sewage

sludge and recovery of process water)

� Lack of experience with large-scale commercial applications (e.g. learning

curve effect)

� Lack of knowledge regarding:

� Process kinetics

� Optimal calibration of process parameters

� No optimal solution for the treatment of the highly contaminated process

water of HTC

Economy

� Low feedstock supply costs (Table 5) due to:

� Low overall substrate costs

� Potential on additional revenues through the use of sewage sludge

(disposal costs)

� Low substrate preparation costs

� Competitive investment and operating costs are expected which compare

with conventional biogenic treatment options (Fig. 4)

� Production costs of HTC-char expected to compete with conventional soil

conditioners

� Lack of cost data for large-scale commercial plants (due to a lack of

experience)

� Higher productions costs are expected for HTP fuels than for conventional

fuels (Fig. 5)

Environment

� Significantly lower GWP of HTP possible compared to conventional reference

systems

� HTC-char as carbon sink in soil

� Little knowledge about stability of HTC-char as a carbon sink in soil

� Negative environmental burden of contaminated HTP process water

Legislation

� Strict legislation for the utilization of sewage sludge for agriculture enhances

need for alternative treatment paths like HTP

� HTP products not authorized as fuel or fertilizers (waste characteristic)

� A lack of standards and norms for HTP products and the processing itself

increases uncertainties for stakeholders
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impede the successful implementation of HTP in Germany.

Fundamental and applied-oriented research is needed to achieve

the next level of technological readiness. This includes building

upon knowledge of process kinetics and process design, the treat-

ment of by-products, and the cost structure of the entire process

chain. Insufficient knowledge about HTC process water treatment

leads to high costs (e.g. use of expensive and inefficient treatment

options), environmental problems (e.g. process water emissions,

contaminant influx) and legal restrictions (e.g. thresholds for

wastewater discharge to WWTP). Furthermore, the lack of data on

large-scale investments increases the uncertainties for many

potentially interested investors, whereby this problem is a result of

a general absence of large-scale applications. The categories under

scrutiny are intertwined with one another. For example, the lack of

knowledge on the long-term stability of hydro-char in soils -

mainly an environmental problem - reduces its economic chances

due to rising uncertainties on the markets for soil conditioners.

The current legal situation in Germany is both a blessing and a

curse. Through the amendment of the German Sewage Sludge

Ordinance, new treatment options for sewage sludge are urgently

needed. Because sewage sludge is one of the most suitable inputs

for HTP this is a general advantage. At the same time, restrictions by

BImSchV and DüMV lead to a situation where HTP products from

sewage sludge are generally not permitted as regular fuel and soil

conditioners.

More research on HTP is necessary to reduce the technological,

economic and environmental barriers. A better holistic under-

standing of this technology platformwill help to generate a basis of

argument for legal adjustments, will be necessary to enable a

successful large-scale application of HTP in biogenic waste man-

agement in Germany. Regarding the potential of HTP to utilize

sewage sludge, it appears that the current legislation can be

adapted in order to simplify the application of HTP for the treat-

ment of sewage sludge. With regard to the current amendment of

the Sewage Sludge Ordinance, this could help to put sludge onto an

efficient and value-enhancing treatment pathway that meets the

new legal requirements.
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a b s t r a c t

Biogenic residues are valuable resources that could be utilized through appropriate technologies like
hydrothermal processes (HTP) that seem to be suitable to transform wet and sludgy biogenic residues
into carbon containing materials and fuels. However, this expectation is not sufficiently evaluated so far
which is particularly reasoned in missing criteria to assess HTP as options for the management of
biogenic residues. In this paper, we present a structured, transferable and transparent approach for
developing techno-economic and environmental suitability criteria for currently discussed HTP concepts
using methods from strategy development, especially SWOT analysis. For this, a focus group workshop
and expert survey with central stakeholder was carried out and enlarged through an extensive scientific
literature review to generate a meaningful information basis. The aim is to identify most relevant criteria
to assess HTP to each other and to conventional reference systems which reduces uncertainty for future
decisions on the suitability of HTP for treating biogenic residues. The results show that especially the
Technology Readiness Level (TRL) is of high importance. Next to this, also the production costs, the
product potential, the competitive situation on sales markets and the emissions through the process are
of high relevance. In following studies, we want to use these criteria for multi-criteria analysis that will
be applied on different scenarios for HTP technology development.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Background

The efficient use of biogenic resources is an important instru-
ment to support the national and international progress towards
sustainable development (BReg, 2016; UN, 2016; UBA, 2016).
However, a considerable part of biogenic materials is currently
inefficiently used (e.g. energetic usage, despite low heating values)
or even not in use, especially because some materials are still
considered as waste and not as a resource (cf. Brosowski et al., 2016;
Pehlken et al., 2016; Tr€oger et al., 2013). For example, a recent study
calculated a technical potential on unused biogenic residues of
26.9e46.9 million metric tons of dry matter [Mg (DM)] just for
Germany. A major share of unused residues is identified for animal

excreta (9.1 mill. Mg (DM)), sewage sludge (5.7 mill. Mg (DM)) and
landscaping materials (2.0 mill. Mg (DM)) (Brosowski et al., 2015).

In the particular case of sewage sludge, current legal initiatives
in most European countries (BReg, 2017; BMEL, 2017; Donatello
and Cheeseman, 2013; Stasinakis and Kelessidis, 2012; Werle and
Wilk, 2010), as well as logistical and energetic challenges due to
its high water content, make the sustainable management of these
residual flows an especially challenging task, for which it is
important to establish suitable technical alternatives (Werle and
Wilk, 2010; Steinle et al., 2009; Zabaniotou and Fytili, 2008).

Exemplary for Germany, the upcoming amendment of the
sewage sludge regulation will require an obligatory recycling of
phosphorus from the sludges generated in wastewater treatment
plants (WWTP). Although this specific obligation depends pri-
marily on the size of the WWTP, most municipal and industrial
WWTPwill be affected (BReg, 2017). That means, that some sewage
sludge treatment possibilities (e.g. direct co-incineration in power
plants or with waste) are not suitable anymore, because a phos-
phorus recovery is not possible with them (cf. Lundin et al., 2004).
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Also the adjustment of Germany’s fertilizer ordinance restricts the
future usage of sewage sludge. Due to aggravated thresholds for
pollutant and nutrient levels regarding sewage sludge that will be
used for agricultural purposes, it is expected that this kind of uti-
lization will decrease on 30% of the current level (Klemm and
Glowacki, 2015).

In summary, there is currently a large potential of unused
biogenic residues already available, and it is expected that new
material flows will be available in future, especially because of
upcoming legal adjustments and further technical developments in
the bioeconomy field (Thr€an and Bezama, 2017; Hildebrandt et al.,
2017). Hence, suitable technologies for a sustainable management
of these materials are needed (Bezama, 2016).

1.2. Hydrothermal process platforms

Hydrothermal processes (HTP) are potentially suitable treat-
ment possibilities for the mentioned biogenic materials (Brosowski
et al., 2015), which is also indicated by the increasing scientific (cf.
Vogel, 2016; Klemm and Glowacki, 2015; Kruse et al., 2013; Libra
et al., 2011) and practical interest (Hallesche Stadt und
Wasserwirtschaft, 2015) during the last few years.

HTP aims at converting biomass into gaseous, liquid or solid
carbon containing end-products via thermochemical conversion.
The procedure needs an aqueous environment for optimal pro-
cessing, which is why residual materials like sewage sludge and
animal excreta are very suitable substrates for applying such
technologies (Kruse et al., 2013).

Depending on the process’ characteristic parameters (pressure,
temperature and residence time) different hydrothermal process
types may occur (see Table 1), which can be categorized into three
main process types:

(1) Hydrothermal Carbonization (HTC) is a coalification pro-
cess which converts raw biomass into hydro-char, a product
that has similar characteristics as fossil coal (Fiori and Lucian,
2017). Hydro-char can be mainly used for energy production
(e.g. as fuel or substitute fuel), material applications (e.g.
carbon filter) and as fertilizer or soil conditioner in agricul-
ture (Vogel, 2016).

(2) Hydrothermal Liquefaction (HTL), also called hydrous py-
rolysis, is a process that converts complex organic structures
(such as organic residual streams) into chemicals and crude
oil. It mimics the natural geological liquefaction process
(Zhang, 2010). The products can be used as liquid fuel for
energy production and as substitute to crude oil in the cos-
metics sector and chemical industry (Kruse et al., 2013).

(3) Hydrothermal gasification (HTG) converts biomass into gas,
mainly methane and hydrogen but also other platform
chemicals. It mimics the natural gas production process. The
products of HTG can be used in the energy sector and
chemical industry for different applications (Vogel, 2016;
Kruse et al., 2013).

1.3. Goal of this work

Although the suitability of specific HTP concepts for the treat-
ment of biogenic residues such as sewage sludge is currently indeed
expected, it has not yet been sufficiently evaluated in a sound sci-
entific manner (cf. HTP Innovationsforum, 2017). Among others, to
reduce practical uncertainties (e.g. for investors) and deliver
comprehensive and objective information for decision makers (e.g.
funding institutions) it will be essential to develop scientifically-
based evaluation instruments to compare the suitability of HTP
concepts for the treatment of biogenic residues with each other
(e.g. HTC vs. HTL) and with reference technologies (e.g. biogas
production, pyrolysis). This will be also helpful for assessing future
technology developments, e.g. by evaluating different scenarios of
HTP development and identify most promising directions from a
recent point of view.

An important step is the development of suitable criteria that fit
to the evaluation of HTP in the mentioned context. Although many
technology assessment criteria exist, there are no criteria that were
developed for this specific case of assessment. Recent works on
technology assessment concentrates on multi-criteria analysis (e.g.
Billig, 2016; Generowicz et al., 2011; Nzila et al., 2012), especially
because multiple criteria enables the comparison of technologies
under consideration of various dimensions (e.g. technological,
economical, ecological and social) which is not possible with such
one criterion (Huang et al., 2011).

Mostly, the criteria are taken from guidelines for technology
assessment (e.g. VDI, 2000) and selected regarding the purpose of
the evaluation. For a structured collection, some guidelines and
examples exist that recommend selection factors which can be
used (cf. Valenzuela-Venegas et al., 2016; Akadiri and Olomolaiye,
2012; Akadiri et al., 2013). However, the selection of criteria is
often executed through the authors of the study without an inte-
gration of external estimations. The integration of experts into the
criteria development is mostly limited to the step of criteria pri-
oritization. For example, Kamali and Hewage (2017) applied a
questionnaire using a 5-point Likert scale to collect professionals’
estimations on indicator applicability. Next to such an intuitive
prioritization procedure, some studies used the Analytical Hierar-
chy Process (AHP) toweight criteria through pair-wise comparisons
of two criteria carried out by experts (e.g. Bezama et al., 2007; Billig,
2016; Kluczek and Gladysz, 2015).

Although the criteria prioritization or weighting is mostly
executed with expert feedback, the initial choice of the criteria set
is still very subjective. This is because just a small number of people
is involved (mostly just the authors/project team members), which
enhances the risk of insufficient selection due to a limited view on
the assessment object (e.g. because of professional background). To
foster objectivity of such criteria derivation it seems necessary to
use a structured approach that integrates also external expert
feedback. Although the feedback of one expert is still subjective, the
sum of all expert feedback is nearly objective (VDI, 2000).

Hence, the central research aim of this paper is to provide a
structured, transferable and transparent approach for the devel-
opment of dedicated suitability criteria for currently discussed HTP

Table 1
Typical temperatures, pressures and residence times for the main types of HTP [adapted from Kruse et al. (2013); Vogel, 2016; Peterson et al., 2008; Boukis et al., 2003].

HTP platform type Temperature range (�C) Pressure range (bar) Typical residence time range (sec)

HTC 160e250 10e30 60e4320
HTL 180e400 40e200 10e240
HTG - Catalytic/low-temperature 350e450 230e400 <10
HTG - Non-catalytic/high-temperature >500 230e400 <10
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concepts using methods from strategy development including
expert feedback. The central method we used is a SWOT (abb. for
Strengths Weaknesses Opportunities Threats) analysis, which is an
instrument from operations research to develop strategies for or-
ganizations (e.g. Kotler et al., 2010). However, SWOT analysis are
applied in many different fields today (Helms and Nixon, 2010;
Rizzo and Kim, 2005; Valentin, 2001) and this also in a modified
and developed way (e.g. Yüksel and Dagdeviren, 2007).

Through the application of the SWOT analysis it is expected to
categorize and connect the estimations of experts in this field with
information from literature, and to formulate strategic targets for a
successful technology application. A considerable advantage of
using the SWOT analysis is that potentials as well as barriers are
considered for the target and criteria derivation. This increases the
holistic nature of the derived criteria, because the risk of a one-
sided concentrating on potentials or barriers is minimized. Based
on these targets, criteria for the assessment of “target achievement”
can be derived. For example, if the target is “increase process en-
ergy efficiency” the corresponding criteria for assessing target
achievement will be “process energy efficiency”.

2. Methodology

The approach applied in this work consisted of a sequence of
eight steps (Fig. 1). Although the methodology was developed for
the assessment of the suitability of HTP platforms for the man-
agement of biogenic residues, the approach can be adopted to other
cases of criteria development.

Step 1: Definition of assessment objective and scope.
First, the objective of the assessment must be clearly defined. In

this analysis, the objective is to assess the suitability of HTP plat-
forms for themanagement of biogenic residues. Next to such a basic
objective, a clear scope should be determined to set the framework
of the analysis. This contains the determination of information on
(1) dimensions that shall be addressed: technological, economic,
environmental and/or social and (2) spatial scope.

In this paper, the following scope is addressed:

(1) Dimensions: technological, economic and environmental
(2) Spatial scope: Primary Germany, because the expert panel

consists mostly of German experts and few experts from
Switzerland. However, the literature review also includes
international information.

Step 2: Structured collection of information.
Several sources were used for collecting the information

necessary for this work. The combination of a literature review and
formats that consider expert opinions (e.g. workshops, surveys,
personal interviews, telephone interviews) is recommended.
Through this, also information that are not published as well as
opinions from different stakeholder groups could be integrated.
Additionally, the objectivity and transparency of the collected in-
formation was very high because many different sources of infor-
mation were taken into consideration.

To identify relevant experts, we used a top-down stakeholder
identification, which will be briefly explained. Stakeholder are
groups or individuals that are influenced or have an influence on
the possibilities of an organization or company to reach its strategic
targets (Freeman, 1984). Reed et al. (2009) recommend a structural
approach to identify and classify the most relevant stakeholder

Fig. 1. Methodological sequence of criteria development [own illustration].
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consisting of a stakeholder identification, categorization and a final
inter-connection of the stakeholder. However, this approach can be
modified depending on the objective of the analysis. For this work,
we decided to concentrate on the stakeholder identification as we
considered it sufficient for this case. A top-down approach was
chosen, whichmeans that the stakeholderswere identified through
an analytical procedure.

Usually, the typical stakeholder of a technology can be identified
through the consideration of information-, material-, financial- and
energy flows (Fürst et al., 2004). With this in mind, the following
information- and material flow chart with corresponding stake-
holders was developed based on charts for conceptual environ-
mental analysis of Frischknecht and Schmied (2002).

The boxes in Fig. 2 show the identified stakeholder groups that
were considered for the selection of the experts.

As formats for collecting expert opinions, we used a focus group
workshop and an expert survey. A total of 41 experts took part in a
focus group workshop organized in September 2016 in Leipzig
(Germany), through which general information on technological,
economic, environmental and legal potentials and barriers of HTP
for the management of biogenic residues were collected and dis-
cussed. The discussion was open, which means that the experts
were asked for general potentials and barriers for every specific
dimension as well as other important factors that must be
considered without asking for specific details. Additionally, the
discussionwas introducedwith a short presentation illustrating the
background. The participants of the focus group workshop were
mainly researchers, technology developers and technology user
from Germany and Switzerland. To generate a meaningful infor-
mation basis, it was necessary to include also the other stakeholder.
This was carried out through an expert survey. The composition of
the survey panel (mostly from Germany) is shown in Table 2. It
must be noticed that several participants represent more than one
direct stakeholder group which is why the overall survey panel of
direct stakeholder includes eight participants. The low participant
number is especially due to the novelty of the assessed technology

which leads to a low number of experts in field in general.
The expert survey consisted of 13 open formulated questions

asking for technological, economic and environmental potentials
and barriers of HTP for the treatment of biogenic residues in
Germany.

Finally, a review of the available scientific literature (see
Reißmann et al., 2018 for more details) was carried out to underpin
the results and include also information beyond Germany and
Switzerland.

It must be considered that legal assessment criteria will not be
developed through this analysis although such information were
collected. This is because the criteria derivation will be based on
dimensions according to VDI 3780 (VDI, 2000) that focus on tech-
nology assessment and do not include legal criteria. However, this
information will be considered as frame-setting conditions.

Step 3: Basic structuring of the information.
All these sources of information delivered a comprehensive

basis on technological, economic, environmental and frame-setting
legal conditions of HTP in the context of treating biogenic residues.
To separate themost relevant information is seems necessary to use
filtering criteria based on the frequency of mentions. Fig. 3 illus-
trates the filtering of information in this analysis. The symbol “�”

means “at least mentioned (by/in)”.
The ‘filtered’ information was afterwards categorized in poten-

tials and barriers for every considered dimension. Depending on
the objective of the analysis, other filtering criteria can be used.
However, the filtering step is essential to differentiate important
from less important information why it should not be skipped.

Step 4: SWOT analysis and target derivation.
Through this step, the potentials and barriers were furthermore

categorized into strengths, weaknesses, opportunities and threats
using a SWOT analysis (cf. Szulecka and Salazar, 2017). Based on the
definitions of traditional SWOT analysis (e.g. Rizzo and Kim, 2005;
Srivastava et al., 2005), Table 3 shows adapted definitions for
strengths, weaknesses, opportunities and threats as well as corre-
sponding key questions which were used in the context of this
analysis. The goal of this categorization was to separate internal,
which means particular controllable, strengths and weaknesses,
from external, which means none controllable, opportunities and
threats.

After categorizing the information, the categories were con-
nected through a matrix approach to develop success strategies/
targets, on which the assessment criteria were derived. Following
strategies/targets are formulated:

� Follow opportunities, which fit to the strengths / SO-targets
� Use strengths, to counteract threats / ST-targets
� Eliminate weaknesses, to use new opportunities / WO-targets
� Develop defenses, to avoid that weaknesses become the aim of
threats / WT-targets

The derivation of criteria was oriented on their suitability to
reach these targets. Hence, the developed assessment criteria refer
to advantages (strengths, opportunities) and disadvantages
(weaknesses, threats) of the technology.

Step 5 and 6: Collection of assessment criteria, derivation of
target specific criteria, setting of target values and categorization
between input and output metrics.

Based on the developed targets, criteria for assessing the pos-
sibility to reach these targets were derived. For this, established
criteria from technology and sustainability assessment were con-
nected to the targets using an arrow/process diagram. Through the
usage of established criteria, the connectivity to established
methods of technology assessment was guaranteed (cf. Billig, 2016;
Kr€oll, 2007).

Fig. 2. Material flows and information flows for HTP and corresponding stakeholder
[adapted from Frischknecht and Schmied (2002)].
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The established criteria were collected for the previous defined
dimensions (see step 1). In this case, criteria on technology, econ-
omy and environment were selected. We used criteria according to
the guideline VDI 3780 (VDI, 2000) and from selected literature on
technology and sustainability assessment (Billig, 2016; Buchholz
et al., 2009; Markevi�cius et al., 2010; Shriberg, 2004; Scheffczik,
2003) to create a comprehensive basis. Table 4 shows the used
criteria.

For the criteria selection, the following principles were used:

(1) Only those criteria were chosen, that are applicable for at
least one target,

(2) The chosen criteria were modified (if needed) with regard to
the corresponding target.

Also these selection principles can be modified depending on
the assessment objective (as defined in step 1).

The results of the comparative selection was a set of assessment
criteria that represent the identified targets. To make these criteria
measurable, units must be connected to the criteria. If possible (e.g.
because legal thresholds exist), also (minimum/maximum) target
values or ranges can be set, e.g. specific efficiency values. Next to
this, it was recommendable to further categorize the criteria in

input and output metrics. This will be useful, if the criteria should
be applied for efficiency evaluation, like Data Envelopment Analysis
(Charnes et al., 1978) or Technique for Order Preference by Simu-
larity to Ideal Solution (Hwang and Yoon,1981). Suchmethods need
a differentiation between input and output criteria.

Step 7 and 8: Checking data availability, data quality, indepen-
dency of criteria and selecting final criteria.

Data availability and a good quality of data are important factors
to ensure the usability of the developed criteria for further

Table 2
Characterization of expert survey participants.

Stakeholder Requested Responses Field of operations Level of operations

Direct Stakeholders
Feedstock supplier 3 3 Sewage sludge and agricultural residues National level
Technology Developer 2 2 Biomass Conversion Technologies National and international level
Technology User 4 4 Hydrothermal carbonization Regional and federal level
Retailer 3 2 HTC product distribution National and international level
Product User 4 2 Agriculture and Energy sector Regional and international level
Indirect Stakeholders
Policy Maker 1 1 Environmental Policy Federal and international level
Researcher 5 4 Biomass Research National and international level
Total 22 18
Response Rate 82%

Fig. 3. Filtering criteria for selection of most relevant information [own illustration].

Table 3
Definitions of SWOT analysis categories oriented on Rizzo and Kim (2005) and Srivastava et al. (2005).

SWOT Categories Short Description Key questions

Strengths Internal resources or capacities which enable
HTP platforms and the resulting products a
potentially successfully market introduction
because there are specific advantages in
contrast to potentially competitive
technological concepts and the resulting
products.

� What are the advantages?
� What are the factors supporting the technology?

Weaknesses Internal limitations, problems or shortages
which impede a successfully market
introduction of HTP platforms and the
associated products in the mentioned systemic
contexts, because they lead to serious
disadvantages regarding competitive
technologies and associated products

� What could be improved?
� What should be avoided?
� What obstacles hinder progress?
� Which elements need strengthening?

Opportunities Mainly external forces that influence the
operating environment of the HTP platforms.
These external forces could lead to sudden
changes on products or technology markets
that go along with new opportunities regarding
business segments or procurement and sales.

� What benefits may occur?
� What changes in usual practice and available technology may

occur?
� What changes in Government policy may occur?
� What changes in standardization may occur?
� What changes in socio-economic behaviour may occur?

Threats Mainly external caused unfavourable situations
that hinder HTP platforms to reach the market
because of specific barriers and limitations that
occur through that.

� Do the relevant stakeholders show their willingness and interest
to support the technology?

� What external obstacles do the technology platform face?
� Is the changing technological and economic environment

threatening the technology platforms market success?
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assessments as well as a high quality of assessment results. How-
ever, this mostly depends on the specific case of evaluation (e.g.
specific process design, cost structure etc.) and cannot be decided
beforehand. Next to this, also independency between the criteria
must be considered. The value of the results of criteria based as-
sessments increases with rising independency, although an abso-
lute independency of all criteria is hardly reachable. According to
Billig (2016), independency can be checked through a calculation
of specific default parameter for each criterion of the assessed
technology concept. If the impact of difference between the tech-
nology concepts superimposes the impact of difference of each
criterion they can be regarded as sufficiently independent. How-
ever, also this independency check depends on the specific
assessment case. Some multi-criteria decision-making concepts do
not need such an independency, because they already assume de-
pendency of criteria. The Analytical Network Process (Saaty, 2001)
is such a method. Hence, depending on the applied evaluation
method the independency check can be perhaps neglected.

An alternative way for a further improvement of the derived
assessment criteria set is presented through Cinelli et al. (2016).
They recommend proving the criteria set on completeness, reli-
ability and validity based on a criteria ranking through expert es-
timations and a following correlation analyses which helps to
identify parameters of highest interest as well as the connections
and dependencies between them.

3. Results

3.1. Essential potentials and barriers of HTP

The described methodology was applied for the development of
assessment criteria for the suitability of HTP platforms as treatment
options for biogenic residues.

First, the overall information basis (expert survey, focus group
workshop and literature review) was filtered through the criteria
mentioned in the methods section (step 3) and categorized into

technological, economic and environmental potentials and bar-
riers. The results are shown in Tables 5 and 6.

The previous tables show the importance of using expert esti-
mations next to a literature review. In particular, the analysis of the
economic aspects is almost completely based on the expert esti-
mations. There was nearly no peer-reviewed literature investigated
that is dealing with economic potentials and barriers of HTP.

As previously mentioned, besides these dimensions, also legal
aspects are considered as frame-setting conditions. They are
especially useful to set threshold for criteria values and make them
potentially measurable. For the case of Germany this includes
following potentials and barriers.

Legal aspects generating potentials for HTP in Germany:

� Strict legislation for the utilization of sewage sludge for agri-
culture due to the amendment of the fertilizer ordinance
(DüMV) enhances the need for alternative treatment paths like
HTP (Libra et al., 2011).

� The new sewage sludge ordinance (AbfKl€arV) regulates phos-
phorous recycling of sewage sludge that exceeds certain phos-
phorous thresholds, hence the co-incineration of sludge with
high P-values is permitted which is a chance for HTP with in-
tegrated P-Recycling as treatment option (Greve et al., 2014).

Legal aspects generating barriers for HTP in Germany:

� HTP products from substrates like sewage sludge are currently
not authorized as fuel or fertilizers, they are legally seen as
waste which impedes the application for some fields. Fuels from
sewage sludge can only be used in waste incineration waste co-
incineration plants in accordance with the 17th Federal Emis-
sions Control Act (BImSchV) (Gawel et al., 2015).

� A lack of standards (e.g. product certificates) and norms for HTP
products and the processing itself increases uncertainties for
stakeholders, especially because they are not comparable to
competitive products and processes (Libra et al., 2011).

Table 4
Selected general criteria for technological and sustainability assessment.

Dimension Operability Economy Environmental quality

Criteria and Sub-Criteria Technical efficiency
� degree of efficiency

o energy
o material

� accuracy
� compatibility with other technologies

Cost factors
� production costs
� life cycle costs
� microeconomic values (e.g. ROI)
� cost efficiency
� external costs

Emissions
� pollutants

o greenhouse gases
o heavy metals

� nutrients
� noise
� rays

Feasibility
� technical know-how
� availability of materials/substrates
� effort for feedstock supply
� type of substrate

o residues
o other

Profitability
� main products

o quality
� by-products

o quality
� product diversification
� price level
� price development
� competitive situation

Resource consumption
� materials

o renewable
o non-renewable

� land
� water

Usability
� robustness
� ease of operation
� ease of repair

Economic stability
� project lifetime
� Technology Readi-ness Level (TRL)

Land use change
� direct
� indirect

Safety and resilience
� resilience against external impacts

(e.g. climate events)
� resilience against internal impacts

(e.g. corrosion)

Employment generation
� number of jobs created
� quality of jobs created

Contamination (of objects
of protection)
� soil
� water
� air
� flora
� fauna
� human
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� Current legal thresholds on the discharge of waste water into
public waste water treatment plants aggravates the necessity of
suitable solutions for process water treatment (optimally on-
site) (Reißmann et al., 2018).

3.2. SWOT analysis and development of strategic targets

Through a SWOT analysis, factors were identified that are
unfavourable or favorable for a successful application of HTP as

Table 5
Overview of the identified essential potentials of HTP.

Category Potentials References

Technology
Feedstock Unused wet and sludgy material flows available Brosowski et al., 2016; Greve et al., 2014

Very suitable treatment option for sewage sludge Greve et al., 2014; Libra et al., 2011
Conversion/Processing/Product

Composition
High energy efficiency (esp. because no drying and thickening
of wet materials is necessary)

Escala et al., 2013; �Skerget et al., 2013

High energy and carbon content of end-products Roman et al., 2012; Vogel, 2016
Integrated phosphorus recycling Heilmann et al., 2014; Dai et al., 2015

Economy
Costs Inter- and cross-sectorial cooperation can reduce overall costs a

Decrease in production costs estimated Jones et al., 2014; Barreiro et al., 2013
Sales Large product variety a

Environment
Environment HTC-char as potential carbon sink Libra et al., 2011; Luterbacher et al., 2009

Global Warming Potential very low compared to
conventional reference systems

Bennion et al., 2015; Luterbacher et al., 2009

a Denotes a result solely from the discussions in the focus group workshop or from the expert surve

Table 6
Overview of the identified essential barriers for HTP.

Category Barriers References

Technology
Feedstock Several material flows are already in use Brosowski et al., 2016; Bardt, 2008

High variation of feedstock composition and quality Lin et al., 2017; Li et al., 2016
Conversion/Processing/Product

Composition
Missing reference plants and long-term experiences a

Less knowledge on chemical process basics and process efficiency a

Missing experiences and knowledge on suitable process water treatment vom Eyser et al., 2015; Vogel, 2016
Economy
Costs Investment uncertainties a

No financing security for plant construction a

Missing robust cost data for several business cases (esp. large-scale) a

Sales No estimations on product potential available a

High competition on sales market a

Sometimes low product quality a

Environment
Environment High contamination of process water (e.g. COD values to high) Vogel, 2016; Wirth and Mumme, 2013

Little knowledge about stability of HTC char in soil as carbon sink Naisse et al., 2015

a Denotes a result solely from the discussions in the focus group workshop or from the expert survey.

Table 7
SWOT analysis for the development of strategic targets on technological aspects.

Internal Analysis for technological aspects

External Analysis for
technological
aspects

Strengths (S)
(1) High suitability for wet and sludgy

residues
(2) High energy efficiency of process
(3) High energy content and carbon content

of end-products

Weaknesses (W)
(1) Less knowledge on chemical process basics
(2) Less experience and knowledge on process water

treatment

Opportunities (O)
(1) Integrate phosphorus recycling in

process concepts
(2) New treatment options for

sewage sludge are needed

SO-targetstech.
� Use available wet and sludgy residues,

especially sewage sludge (S1/O2)
� Improvematerial and energy balance of the

process and integrate P-recycling (S2/S3/
O1)

WO-targetstech.
� Focus on knowledge building for (chemical) process design

with integrated P-recovery (W1/O1)
� Focus on knowledge building on process water treatment,

especially with sewage sludge as feedstock (W2/O2)

Threats (T)
(1) Several material flows already in

use which reduces available
feedstock

(2) Variation of feedstock
composition and quality

(3) Missing reference plants and
long-term experiences

ST-targetstech.
� Concentrate on available and best suitable

wet and sludgy feedstock (S1/T1/T2)

WT-targetstech.
� Focus on knowledge building on (chemical) process design

and process water treatment for existing plants (W1/W2/
O3)
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options for the treatment of biogenic residues. Based on this, suc-
cess strategies/targets can be derivedwhich furthermorewere used
to develop assessment criteria. Tables 7e9 show the results of the
SWOT analysis.

The SWOT analysis for technological aspects shows that stra-
tegic targets regarding the availability of the substrates, process
water treatment and suitable process design are most important.
Especially knowledge building seems essential to improve the po-
tential success of HTP concepts for the management of biogenic
residues. Some of the targets could be underpinned with quanti-
tative values if available (see Section 3.3). For example, the target
S1/O2 can be quantified through moisture content of the substrate
(parameter for “wet and sludgy”) or maximum distance to the
treatment plant (parameter for “availability”).

Economic targets concentrate on production costs, product po-
tential and product quality as well as data availability for business
cases. Some of these targets seem to be easy to connect with a
criterion, e.g. production costs which is already an economic
assessment criterion. Other criteria seem to bemore complicated to
asses, such as data availability on business cases. Usually, such as-
pects will not be addressed through economic evaluation criteria.
Through the applied method also these kinds of issues will be
connected to criteria which shows the added value of this struc-
tured approach. Also for the economic targets, some of the corre-
sponding criteria should be quantifiable, e.g. production costs.

Environmental targets refer especially to the GWP of HTP and
resulting products as well as the environmentally friendly treat-
ment of by-products like the contaminated process water. Espe-
cially the development of criteria for the environmentally friendly
process water treatment will be new and innovative because most
reference processes to HTP (e.g. pyrolysis) are not confronted with
such contaminated liquid by-products. Hence, no criteria can be

easily adopted from comparable technology assessments.

3.3. Development of assessment criteria

Based on Table 4 and the explanations made for steps 5 and 6 of
themethodology section, the general criteriawere connected to the
SWOT targets. The chosen general criteria were modified to fit the
HTP targets. Generally, sub-criteriawere preferred because they are
more specific than main criteria. Just for the case that the target fits
to several sub-criteria of a main criterion the main criterion was
chosen. Figs. 4e6 show the arrow/process diagrams for the
connection of strategic targets and criteria as well as the derived
modified criteria for the HTP evaluation.

Table 8
SWOT analysis for the development of strategic targets on economic aspects.

Internal Analysis for economic aspects

External Analysis for
economic aspects

Strengths (S)
(1) Large product variety

Weaknesses (W)
(1) No robust data for large-scale business and reference cases
(2) Sometimes low product quality
(3) No estimations for product potential

Opportunities (O)
(1) Inter- and cross-sectorial

cooperation
(2) Estimated decrease in

production costs for HTP

SO-targetsecon.
� Focus on products with highest estimated

decrease in production costs (S1/O2)

WO-targetsecon.
� Use cooperation to generate and share data for business

cases (W1/O1)
� Focus on products with high quality and high estimated

decrease in production costs (W2/O2)
� Estimate product potential and integrate estimated decrease

in production costs (W3/O2)
Threats (T)
(1) Investment uncertainties

and missing financial
security

(2) High competitive situation

ST-targetsecon.
� Focus on product markets with relative low

competitive situation (e.g. find niche) (S1/T2)

WT-targetsecon.
� Estimate product potential and generate data for business

cases to reduce investment uncertainties (W1/W3/T2)

Table 9
SWOT analysis for the development of strategic targets on environmental aspects.

Internal Analysis for environmental aspects

External Analysis for
ecological aspects

Strengths (S)
(1) Low Global Warming Potential (GWP)

Weaknesses (W)
(1) High contaminated process water

Opportunities (O)
(1) HTC char as

carbon sink

SO-targetsenv.
� Focus on the potential of GWP (CO2)

reduction via HT processes and products
(S1/O1)

WO-targetsenv.
� Ensure a high carbon transfer into the end-product to reduce process

water contamination and foster quality of end-product (W1/O1)

Threats (T)
(1) Unknown

stability of HTC
char in soil

ST-targetsenv.
� Concentrate on greenhouse gas reduction

potential through processing (S1/T1)

WT-targetsenv.
� Focus on the suitable and ecological treatment of by-products and avoid

negative environmental effects due to knowledge gaps (W1/T1)

Fig. 4. Process diagram for the derivation of technological criteria.
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Because the importance of integrated phosphorus recycling
during the processes was mentioned multiple, an additional crite-
rion for “recycled phosphorus” is introduced.

The relevant criteria to assess the potential for HTP as options
for the treatment of biogenic residues as well as their measurement
units are presented in Table 10 as summarizing overview. It is
differentiated between input and output metrics. Input metrics
represent criteria that must be minimized, whereas output metrics
represent criteria that should be maximized to enhance efficiency.
The dry matter content of the substrates represents a K.O. criterion
because a specific range is necessary for HTP to become a suitable
treatment option.

4. Discussion

By connecting the general criteria from technology and sus-
tainably assessment with the targets derived from the SWOT
analysis (Figs. 4e6) it becomes possible to select specific criteria
which reflect technology specific potentials and barriers for the
chosen dimensions. Because the relevant information was identi-
fied with an expert survey, workshop and literature review the
criteria are objective and transparent.

Considering the number of mentioned potentials and barriers
and the derived SWOT targets a focus is set on criteria for the
technological dimension. Especially the TRL seems to be an
essential assessment criterion, which shows the high number of
addressed targets. Based on the identified criteria of this analysis, a
next step will be to prove the availability and quality of needed data
and check the independency of the criteria to each other for specific
cases (see step 7 of the methodology).

Most selected criteria are measurable on a cardinal scale. Just
the TRL assessment depends on an ordinal scale, which means that
the measured elements can be ranked but no quantifiable differ-
ences between these ranks can be measured (David and Nagaraja,

Fig. 5. Process diagram for the derivation of economic criteria.

Fig. 6. Process diagram for the derivation of environmental criteria.

Table 10
Identified criteria for evaluating HTP as options for the management of biogenic residues including measurement scales & units and target values/ranges.

Criteria Definition Unit Relevant process step Number of targets
addressed

Dry matter content of
substrates

The relation of organic dry matter to water
content of the substrate. Recent studies
recommend an organic dry matter content
between 10 and 30% for optimal processing.
If this range is not fulfilled the considered
substrate is not suitable and hence the
alternative may be excluded from the
analysis (Reißmann et al., 2018).

Percent of organic dry
matter content

Feedstock provision 2

Production costs of final
product

Rawmaterial costs andmanufacturing costs
of the product (e.g. hydro-coal) (Bronner,
2013).

Euro per mass unit
(e.g. kilogram)

Feedstock provision and
conversion/refinement

4

Distance of plant to suitable
substrates

Transport distance of suitable substrates
from place of occurrence to treatment plant.

Distance unit (e.g. meter) Feedstock provision 2

Degree of pollution of process
water

Share of organic substances in residual
water that occurs after hydrothermal
processing (Fettig et al., 2015).

mgO2/L (COD value) By-products 2

Process life cycle emissions GHG emissions occurring through the
process steps relating to the system
boundaries (ISO, 2006).

Global Warming Potential
(CO2 equivalent)

All process steps 2

Output metrics

Technology Readiness Level Classification of the level of development of
a considered technology according to ISO
16290 (ISO, 2013).

Assessed on a scale from
1 to 9 (cf. Mankins, 1995)

All process steps 6

Material efficiency (-balance) Relation of product output to raw material
input (Eichhorn, 2000).

Percent of mass unit Conversion/refinement 1

Energy efficiency (-balance) Relation of energy output to energy input
(Eichhorn, 2000).

Percent of energy unit
(e.g. Mega Joule)

Conversion/refinement 1

(continued on next page)
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2003). This is of importance for the selection of a suitable assess-
ment method because for some methods scales must be adapted if
attributes depend on an ordinal scale (cf. Peters and Zelewski,
2007). Only for the moisture content of the substrate, a target
range exist which is why this criterion has been identified as a K.O.
criterion. For this reason the range must be fulfilled to ensure an
economic processing (Vogel, 2016; Greve et al., 2014).

From a methodological point of view, it can be determined that
instruments from strategy development seem suitable for a struc-
tured development of evaluation and assessment criteria of tech-
nologies, if the overall target e in this case the technologies
suitability for the treatment of biogenic residues e is clearly spec-
ified. Hence, the introduced method is also transferable for other
contexts of criteria development. The most critical step for a suc-
cessful criteria development is the collection of information. We
recommend to integrate estimations of relevant experts next to a
general literature investigation. In this analysis, many potentials
and barriers have been identified based solely on expert
estimations.

Regarding the goal of this work, it was shown how this approach
can be used to develop technology specific assessment criteria for
different evaluation dimensions. A central advantage of this
method are the high transparency levels of the resulting criteria,
which can be ensured through the integration of several indepen-
dent experts.

A shortcoming is the relative high effort for the information
collection procedure. However, especially for new and emerging
technologies this effort will be very worthwhile because the in-
formation can be also used for additional purposes than criteria
development, e.g. strategy development or qualitative technology
forecasting. Mostly, SWOT analysis are common practice for com-
panies and other entities. Hence, the application of this structured
approach will be easy to integrate because a well-known instru-
ment (SWOT analysis) can be used.

5. Conclusion

This analysis was carried out to present a transparent and
structured approach for developing dedicated criteria to assess the
suitability of HTP for treating biogenic residues. With the approach
explained in section 2 it became possible to derive such criteria by
using elements from strategy development, in particular SWOT
analysis. The general approach can be used for different cases of
criteria development unless that this study was focusing on HTP. In
result, the most important assessment criteria seem to be the TRL,
production costs and the carbon share and calorific value of the
end-product. However, it should be considered that a slight ten-
dency for the selection of criteria is connected with the selection of
the expert panel. In this case, technology oriented stakeholder
groups dominated which is a possible reason for the high impor-
tance of the criterion TRL. This is why it is recommendable to create
an expert panel that represents mostly all stakeholders in a

balanced way.
In many of the discussions carried out with experts in the field,

one subject that prompted was the development of a tool based on
multi-criteria analysis to transmit these criteria into a robust,
transparent and holistic methodological framework. Such an in-
strument needs to be developed and tested for case studies to
validate the applicability. The value-added of the instrument will
be that the technologies of the HTP platform (HTC, HTL, HTG) will
become comparable to each other and to specific reference systems
(e.g. pyrolysis). Next to this, the assessment procedure will be able
to compare the generic platform types based on average data as
well as specific concepts based on real data from practice. It can be
used by different stakeholder groups, e.g. for investment or funding
decisions. Further studies will focus on developing such an
assessment instrument or instruments to support future decisions
in this field of technology. In particular, the use of such a multi-
criteria analysis tool for assessing scenarios - that represent po-
tential future pathways of HTP - will be an essential part of forth-
coming studies.
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Introduction

The efficient use of biogenic residues and waste can reduce costs 
and greenhouse gas emissions, save natural resources and pro-
mote climate protection (Eriksen et al,. 2017). Besides, such a 
utilization can foster the progress towards a bio-economy (cf. 
BMEL, 2014; European Commission, 2012) that aims at value-
added treatment of biomass for producing materials, chemicals, 
fuels and energy in a sustainable manner and after providing suf-
ficient food and feed for societal needs (Bezama, 2016; Thrän 
and Bezama, 2017). However, a considerable part of biogenic 
residues and waste is inefficiently (e.g. energetic use despite of 
low heating values) or not even used yet (cf. Brosowski et al., 
2016; Pehlken et al., 2016; Tröger et al., 2013). A study that ana-
lysed twelve countries of the European Union focusing on the 
potential of biogenic residues for cellulosic biofuel production 
has shown that particularly France has high unused amounts of 
up to 60 million metric tonnes’ dry matter per year. Forecasts for 
2020 and 2030 even show that these quantities will increase for 
most of the observed countries (Searle and Malins, 2015). 
Considering this, the identification of suitable technological 
solutions for sustainably utilizing such bio-waste in future is of 
high interest for research and practice (cf. Eriksen et al., 2017; 

Parawira et al., 2008; Tröger et al., 2013). Previously, it was 
determined that especially the treatment of wet and sludgy sub-
strates has gained rising attention in the last years (Reißmann 
et al., 2018). In contrast to solid bio-waste, wet and sludgy resi-
dues need an energy-intensive and cost-intensive pre-treatment 
(e.g. drying and thickening) to be suitable for conventional bio-
mass treatment paths which impedes their usage. However, some 
biomass conversion processes are generally applicable to treat 
these residual streams (Zhang et al., 2014), for example, bio-
chemical processes such as anaerobic digestion (AD) and thermo-
chemical processes such as pyrolysis (Han et al., 2016; Poulsen 
et al., 2012; Wzorek and Tańczuk, 2015). Nonetheless, 
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Abstract
A considerable amount of wet biogenic residues and waste has no resource-efficient use in several European countries yet. 
Hydrothermal processes (HTP) seem to be promising for treating such biomass as they best work with substrates with 70% to 90% 
water content. However, thus far the suitability of HTP for this purpose has not been sufficiently evaluated, for which this work aims 
to identify suitable multi-criteria analysis (MCA) methods that can be used to identify promising ways for the hydrothermal treatment 
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shortcomings are connected to the mentioned treatment paths 
which impede the decision for the optimal solution (e.g. difficul-
ties due to high pollutant/nutrient contents) (Nielfa et al., 2015; 
Prabhu and Mutnuri, 2016; Rulkens, 2008; Saxena et al., 2009). 
Besides, while most biomass with a high moisture content were 
treated via AD for energetic purposes in the past, requirements of 
the European Waste Framework Directive have prioritized a 
material treatment before an energetic use since 2008 (European 
Union, 2008). Thus, processes that include material fields of 
application are of certain interest. Due to these obstacles and 
requirements, substantial amounts of wet biogenic residues are 
not in use yet or will need new ways of treatment in future. 
Activities in research and practice indicate that hydrothermal 
processes (HTP) seem to be promising paths for transforming 
wet biomass into gaseous, liquid or solid carbon containing prod-
ucts by thermochemical conversion (Hallesche Stadt und 
Wasserwirtschaft, 2015; Kruse et al., 2013; Libra et al., 2011; Lin 
et al., 2017). The procedure needs high water containing sub-
strates for optimal processing, which is why materials such as 
sewage sludge are particularly suitable (Greve et al., 2014). 
Depending on the process parameters (temperature, pressure and 
residence time) different HTP types occur (Table 1).

The suitability for the hydrothermal treatment of wet bio-
waste has not been sufficiently evaluated yet. Hence, there is a 
particular interest for a tailor-made assessment approach (cf. 
Reißmann et al., 2018: 248). A stakeholder workshop carried out 
in September 2016 in Leipzig, Germany (cf. DBFZ, 2016) 
showed the need of an assessment tool considering multiple 
attributes. Most stakeholders argued that the assessment of HTP 

by multiple criteria will help to reduce uncertainty for decision-
making regarding funding and investment but also to identify 
research priorities for HTP. However, most current studies con-
centrate on single aspects such as optimization of process 
parameters (cf. Aggrey et al., 2012; Elliot, 2008; Klingler and 
Vogler, 2010), economic assessment (cf. US Department of 
Energy, 2014, 2016) or life cycle assessment (cf. Ahamed et al., 
2016; Bennion et al., 2015). But to recommend promising tech-
nology development paths based on scenarios (e.g. increase of 
full-scale HTP plants in Europe due to implementation of cost-
effective treatment for process water), a suitable multi-criteria 
assessment tool indicating if HTP are still promising based on 
computations with data on economic, environmental and tech-
nological aspects seems useful. Thus, the question that rises is 
how it will be possible to identify the most suitable ways for the 
hydrothermal treatment of wet bio-waste by considering multi-
ple attributes.

This study wants to contribute to the solution of this question. 
Therefore, the goals of this work are: providing an overview of 
MCA methods commonly used in bio-waste management 
research; defining necessary requirements to evaluate HTP in a 
systematic way; and analysing if commonly used MCA methods 
fulfil these requirements and if not proposing an MCA approach 
to evaluate HTP for managing wet biogenic residues that fulfils 
all requirements.

Materials and methods

The work was organized in three steps as presented in Table 2.

Table 1. Overview of hydrothermal processes (HTP) types (adapted from Reißmann et al., 2018).

HTP type Brief definition Process characteristics

Hydrothermal carbonization Coalification process converting biogenic materials into hydro-char 
(Fiori and Lucian, 2017). Hydro-char is primarily used for energetic 
purposes, material applications and in agriculture as fertilizer or 
soil conditioner (Lu et al., 2012)

160–250°C
10–30 bar
1–72 hours

Hydrothermal liquefaction Process transforming biogenic materials into chemicals and 
bio-oil (Zhang, 2010). Bio-oil is used as liquid fuel for energy 
production and as substitute for crude oil in the cosmetics and 
chemical industries (Kruse et al., 2013)

180–400°C
40–200 bar
10–240 minutes

Hydrothermal gasification Process converting biomass into gaseous materials, primary 
methane and hydrogen. The main products are used for energy-
generating purposes and for applications in the chemical industry 
(Kruse, 2009).

350–500°C
230–400 bar
< 10 minutes

Table 2. Methodological sequence of the study.

Steps Aims Methods

1
Review

Identification of most common multi-criteria analysis 
(MCA) methods in waste management and bio-waste 
management

Search strategy-based review

2
Applicability check

Proofing applicability of MCA methods for evaluating 
hydrothermal processes (HTP)

Checklist with methodological requirements 
for HTP assessment

3
Methods development

Proposing a tailor-made MCA procedure for HTP. 
Preliminary validation of the proposed approach with 
data from the literature

Adaption and/or combination of MCA methods 
within an assessment approach fulfilling the 
methodological requirements
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Step 1: review

A literature review was executed to identify the most commonly 
used MCA methods in bio-waste management research by apply-
ing a structured search strategy (Table 3).

About 90 studies were identified. However, documents had to 
be excluded due to missing details regarding the MCA methods 
used and an insufficient focus on bio-waste management con-
texts. In all, 31 documents were reviewed with regard to the 
MCA methods used.

Step 2: applicability check

The suitability of the identified methods is assessed by using a 
checklist on methodological requirements. For this, a point scale 
is used to assess the level of suitability, that is, 2 points mean that 
the requirement is fulfilled, 1 point means that the requirement is 
in part fulfilled and 0 points mean that the requirement is not 
fulfilled.

Step 3: methods development

If no considered MCA method fulfils all requirements, this means 
that no method is directly transferable for evaluating HTP. Hence, 
a tailor-made approach for HTP will be proposed. For this, most 
suitable MCA methods will be combined and/or adapted in an 
overall technology assessment (TA) procedure.

Results and discussion

Review on MCA studies in bio-waste 
management

Thirty-one studies were analysed of which four are review arti-
cles. Table 4 shows the thematic focus and applied MCA methods 
of the observed studies.

None of the assessed studies is focusing on bio-waste man-
agement which indicates the lack of MCA approaches for this 
field of study. In contrast, 39% of the studies focus on municipal 
solid waste management. Thus, in most studies bio-waste is at 
least partly regarded as if it is a fraction of municipal solid waste. 
However, the management of wet and sludgy biogenic residues is 
not considered by the observed studies. For healthcare waste 

(13%), industrial waste (13%) and management issues (19%) 
such as site selection, waste collection and paper waste manage-
ment MCA methods are applied too. The review results show 
once more the necessity of a customized MCA approach for HTP, 
because no appropriate MCA approaches exist for relative fields 
such as the assessment of technologies for the management of 
wet bio-waste in general.

Most studies use the analytical hierarchy process (AHP) 
(42%) which is also confirmed by the observed review articles 
(cf. Achillas et al., 2013; Coelho et al., 2017; Mardani et al., 
2015; Soltani et al., 2015). However, also combined methods are 
applied by 23% of the studies. Table 5 describes the considered 
methods and combinations/adaptions briefly.

Because none of the considered MCA is focusing on bio-
waste management, this analysis will provide novel information 
on the suitability of MCA methods for bio-waste management 
especially for the hydrothermal processing of wet biogenic 
materials.

Applicability check of identified MCA 
methods

To check the applicability of the identified MCA methods for 
evaluating HTP, methodological requirements must be 
defined. General requirements are transparency, consistency 
and transferability (cf. Billig, 2016; DFG, 2013; Ganzevles 
and van Est, 2012; Scheffzcik, 2003). Besides, the following 
aspects have to be fulfilled by a suitable method for evaluating 
HTP:

Holistic nature: thermo-chemical and bio-chemical biomass 
conversion technologies and energetic as well as material treat-
ment paths can be considered.

Multi-dimensionality: quantitative and qualitative techno-eco-
nomic and environmental attributes can be considered 
simultaneously.

Applicability: the method is easy to apply also without detailed 
background knowledge (e.g. for calculations).

Objectivity: the selection and weighting of criteria involves 
stakeholder/experts to ensure transparency, relevance and objec-
tivity of criteria.

Adaptability: the procedure is iterative, to make steps repeat-
able and adaptable.

Table 3. Search strategy.

Category Specification Reason for specification

Considered time period Sources not older than five years Only most recent MCA methods should be identified
Considered sources Google, Google Scholar, Scopus, Science 

Direct
Most common search engines for scientific 
purposes

Considered document 
types

Scientific articles, conference proceedings, 
books and book chapters

Most common document types for publishing 
scientific analysis

Search terms Multi-criteria analysis (MCA) waste 
management; MCA bio-waste management; 
multi-criteria decision-making waste 
management

Search terms were defined with respect to the aim 
of step 1
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Benchmarking: target values considering certain requirements 
can be determined.

The identified MCA methods were checked with regard to 
the mentioned requirements (Table 6). Fuzzy logic MCA and 
combined methods were not considered as they do not represent 
own MCA methods but adaptions, extensions and combinations 
of them. As mentioned, a point scale from 0 to 2 was used to 
assess the MCA methods regarding requirement fulfilment. 
Details for the rating are described in the supplementary infor-
mation (SI) file.

Results show that no identified MCA method fulfils all 
requirements and is therefore directly applicable to HTP evalua-
tion. Thus, a combined method including most useful elements of 
the considered MCA approaches must be developed to reach a 
higher degree of fulfilment. AHP, preference ranking organiza-
tion method for enrichment evaluations (PROMETHEE) and 
technique for order preference by similarity to ideal solution 

(TOPSIS) seem most suitable because they already reach high 
degrees of fulfilment. They fulfil the requirements of holistic 
nature, applicability and adaptability. The requirement multi-
dimensionality is in part fulfilled through these methods. 
Qualitative criteria are considered if they are measurable on an 
ordinal scale (i.e. a scale with similar distances). Hence, nominal 
values (e.g. “yes” or “no” attributes) cannot be considered by the 
methods. However, most criteria values are at least ordinal. 
Regarding the requirement of objectivity, the AHP seems more 
suitable because expert involvement is usually part of the criteria 
weighting. Further, a criteria selection or weighting procedure is 
not part of PROMETHEE and TOPSIS at all. Hence, for criteria 
weighting the AHP should be used. However, for determining 
criteria, AHP, PROMETHEE and TOPSIS include no expert 
involvement. This is why an own approach for a more objective 
criteria determination was previously developed. Regarding 
benchmarking, AHP, PROMETHEE and TOPSIS can be enlarged 

Table 4. Thematic focus and multi-criteria analysis (MCA) methods of observed studies.

Thematic focus Applied MCA method Corresponding studies Additional information

General focus Analytical hierarchy process (AHP) Milutinović et al. (2017) −
Achillas et al. (2013) 79 articles reviewed by this study

Fuzzy AHP Zare et al. (2016) −
Preference ranking organization 
method for enrichment evaluations 
(PROMETHEE)

Makan et al. (2013) −

Vise Kriterijumska Optimizacija I 
Kompromisno Resenje (VIKOR)

Opricovic and Miloradov 
(2016)

−

Municipal solid 
waste

AHP Milutinović et al. (2014) −
Antonopoulos et al. (2014) −
Soltani et al. (2015) 68 articles reviewed by this study
Thampi and Rao (2014) −
Vučijak et al. (2016) −

Technique for order preference by 
similarity to ideal solution (TOPSIS)

Nouri et al. (2014) −
Jovanovic et al. (2016) −
Klavenieks et al. (2017) −
Asefi and Lim (2017) −

PROMETHEE Panagiotidou et al. (2015) −
Quality function deployment Santos et al. (2017) −
Combined method Herva and Roca (2013) Combination of AHP and PROMETHEE

Industrial 
waste

AHP Nouri et al. (2018) −
Coelho et al. (2017) 260 articles reviewed by this study

Combined method Mir et al. (2016) Combination of TOPSIS and VIKOR
Chauhan and Singh (2016) Combination of fuzzy AHP and fuzzy 

TOPSIS
Healthcare 
waste

AHP Yap and Nixon (2015) −
Mardani et al. (2015) 393 articles reviewed by this study

Fuzzy VIKOR Liu et al. (2013) −
Combined method Hariz et al. (2017) Combination of AHP, VIKOR and 

PROMETHEE
Waste 
management 
issues

VIKOR Liu et al. (2014) −
AHP Ferreira et al. (2015) −

Majumdar et al. (2017) −
Fuzzy decision-making trial and 
evaluation laboratory

Wang et al. (2018) −

Combined method Arıkan et al. (2017) Combination of fuzzy TOPSIS and 
PROMETHEE

Shahba et al. (2017) Combination of AHP and TOPSIS
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with a sensitivity analysis to determine potential thresholds or to 
test scenarios. Thus, the aimed for method should also include a 
sensitivity analysis. Especially, because of its higher applicability 
and the more intuitive interpretability of the results compared to 
the AHP and PROMETHEE, TOPSIS will be used for the com-
parison of alternatives.

Proposed MCA procedure for evaluating 
HTP

Previous results indicate the lack of sufficiently suitable MCA 
methods for HTP assessment which is why a tailor-made 

procedure is proposed. This method will assess HTP to each 
other and relevant reference systems by considering multiple 
attributes for the first time. The following step-wise and iterative 
procedure was developed. Because the basic procedure is struc-
tured as a TA framework, the approach is in part transferable to 
comparable evaluations of biomass conversion processes.

The technology “fact sheet”: setting the investigation frame-
work and describing the considered technologies. To get 
consistent, interpretable and transparent results, first it is neces-
sary to set an investigation framework which defines evaluation 
purpose, system boundaries and considered time period. Further, 

Table 5. Descriptions of the multi-criteria analysis (MCA) methods used by the observed studies.

MCA method Description Reference

Analytical hierarchy process Identification of preferences by pair-wise comparisons of 
criteria using a procedural sequence. Criteria are sorted 
hierarchically

Saaty (1987)

Decision-making trial and 
evaluation laboratory

Analysing and solving complex and intertwined problems by 
verifying interdependence between variables. Improving them 
by creating a specific chart to reflect interrelationships between 
variables

Fontela and Gabus (1976)

Preference ranking 
organization method for 
enrichment evaluations

Multi-criteria decision-making by building of an outranking 
between different alternatives

Brans et al. (1986)

Quality function deployment 
(QFD)

Several quality criteria are combined within a QFD matrix to show 
correlations. Aim is to identify products and services that are 
desired by customers under consideration of multiple criteria

Akao (1992)

Technique for order 
preference by similarity to 
ideal solution

The advantageousness of an alternative is assessed by 
determining the distance to the (virtual) best and worst 
alternative

Hwang and Yoon (1981)

Vise Kriterijumska 
Optimizacija I Kompromisno 
Resenje

Multi-criteria optimization of complex systems based on ranking 
and selecting from a set of alternatives considering conflicting 
criteria. The ranking is performed by comparing the measure of 
closeness to the ideal alternative

Opricovic (1998)

Fuzzy logic MCA MCA that deal with unclear information (fuzziness). In general, all 
of the above-mentioned MCA can be enlarged with fuzzy logic

Abdullah (2013)

Combined methods The MCA combine two or more of the above-mentioned methods 
within a common technology assessment procedure

−

Table 6. Comparison of multi-criteria analysis methods regarding requirement fulfilment.

Analytical 
hierarchy 
process

Decision-
making trial 
and evaluation 
laboratory

Preference ranking 
organization method 
for enrichment 
evaluation

Quality 
function 
deployment

Technique for 
order preference 
by similarity to 
ideal solution

Vise Kriterijumska 
Optimizacija I 
Kompromisno 
Resenje

Holistic nature 2 2 2 1 2 2
Multi- 
dimensionality

1 2 1 2 1 1

Applicability 2 1 2 1 2 1
Objectivity 1 0 1 1 1 1
Adaptability 2 1 2 1 2 2
Benchmarking 1 0 1 0 1 1
Degree of 
fulfilment 
(absolute)

9/12 6/12 9/12 6/12 9/12 8/12

Degree of 
fulfilment 
(relative)

75% 50% 75% 50% 75% 66%
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most important technology characteristics must be described to 
enhance the transparency and thus the interpretability of the 
results. After which, the system boundaries of the considered 
technologies must be set. The system can contain: (1) feedstock 
provision and pre-treatment; (2) conversion and refinement; (3) 
products and by-products; (4) logistics and distribution; (5) 
product usage; and (6) deposition or re-use/recycling (end-of-
life). This is especially important to define suitable reference 
systems, for example, if no products are considered, reference 
systems must not necessarily operate on competitive product 
markets. Often it is not needed to consider all system compo-
nents because of an already specific assessment purpose. In 
addition, the decision for including system components depends 
on data availability, which is why system boundaries are often 
limited. It is crucial to check data availability on system compo-
nents and set them in context to the necessity of including them. 
Several TA studies recommend that effort and benefits of the 
analysis must be in balance to ensure the applicability (cf. Billig 
and Thrän, 2016, 2017; Hall, 2012). After defining the system 
boundaries, suitable reference systems must be determined to 
enhance the interpretability of results. For HTP, the determined 
reference systems should be competitors for the same substrates 
that could be utilized through HTP and/or operate at the same 
product markets. Depending on the analysis focus the general 
TA procedure can be adopted at this point (e.g. if specific con-
version efficiencies are compared). However, the definition of 
reference systems depends on the assessment purpose and must 
consider the investigation framework, technology characteris-
tics and system boundaries. In general, the comparability of the 
considered technologies must be carefully checked at this point. 
The results of this step can be summarized in a technology “fact 
sheet” (cf. SI).

Developing and selecting technology-specific assessment cri-
teria. Suitable assessment criteria are crucial to ensure signifi-
cant results. Criteria must fulfil requirements such as objectivity, 
consistency, adaptability, transparency and non-redundancy. 
Also, reliable data should be available. The criteria shall repre-
sent the assessment object nearly in complete (Rohweder et al., 
2015) and should have minimal influence to each other. How-
ever, a total independency cannot be reached in practice (Billig, 
2016). The development of metrics for MCA is usually carried 
out in a less structured way and through a limited number of pri-
mary internal experts (e.g. project team members). Although 
some guidelines and examples recommend selection factors 
which can be used, the integration of relevant stakeholders into 
criteria development is often limited to criteria prioritization (cf. 
Akadiri and Olomolaiye, 2012; Akadiri et al., 2013; Valenzuela-
Venegas et al., 2016). To foster objectivity and transparency of 
criteria derivation, the authors recommend a structured process 
using instruments from strategy development for the transparent 
selection of dedicated assessment criteria (cf. Figure 1, step 2). 
The derived criteria can be seen as a “long list”. This means, 
depending on the specifications in the “fact sheet”, only a part of 

the criteria will be used for the actual assessment. It is recom-
mendable to use a decision chart for the final selection of criteria 
which depends on the analysis case. Finally, only a selection of 
criteria from the “long list” are taken into account for the 
analysis.

Multi-criteria decision-making and sensitivity analysis. To 
weight the selected criteria the AHP will be used. The basic pro-
cedure includes the following steps according to Saaty (1990): 
creating the decision hierarchy; making pair-wise comparisons of 
decision-making parameters (criteria and alternatives); calculat-
ing priorities of decision-making parameters; and check consis-
tency. For the proposed procedure, an adapted AHP is used. This 
means, only the second and third step is executed. The first step 
is skipped, because the decision hierarchy is created through the 
previous steps of the overall procedure and evaluation criteria are 
already selected. The comparison of alternatives is part of TOP-
SIS and thus also excluded at this point. Thus, the AHP is primar-
ily applied for derivation of criteria weightings. It is 
recommendable to use expert estimations to generate the weight-
ings. For this, pair-wise comparisons of all criteria ci  to each 
other have to be carried out. To select the expert estimations a 
Delphi survey can be applied. The Delphi method is a systematic 
survey scheme with multiple steps containing feedback loops. 
The aim of this method is to reduce misjudgements of experts by 
applying the survey at least two times (Rowe and Wright, 1999).

After executing the AHP, the consistency of the weightings 
has to be checked. This means, if the criteria are ranked like A > 
B > C then also A > C must be valid (Saaty, 1987). However, this 
form of consistency is often not fulfilled if several criteria and 
criteria relations are part of the analysis. For this, Saaty (1987) 
has developed the consistency index (C.I.) and the consistency 
ratio (C.R.) which can be calculated with AHP software by using 
the maximum eigenvalue (λmax ) of the corresponding eigenvec-
tor. Equation (1) must be used:
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R.I. means random index which is an average C.I. of randomly 
reciprocal matrices. The R.I. is given by Saaty (1987) with regard 
to the number of criteria.

The weighted criteria are furthermore used in TOPSIS. In 
TOPSIS, a set of different decision alternatives are compared in 
relation to each other by using multiple criteria and taking the 
best-case and worst-case as benchmarks (Hwang and Yoon, 
1981). Thus, the best alternative in relation to other ones that are 
part of the analysis is calculated. This is why these types of MCA 
are also named multi-attribute decision-making with a discrete 
solution space (Geldermann and Lerche, 2014). The more alter-
natives and criteria are applied the significance of TOPSIS’ 
results rises accordingly. However, also the effort for the applica-
tion of this method rises with a higher number of alternatives and 
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criteria which is why a useful balance between significance and 
effort must be considered regarding the assessment objectives. In 
comparison to classical MCA methods such as utility analysis, 
TOPSIS is able to handle a high number of criteria if preferences 
are not fully clear. Thus, this assumption of TOPSIS adequately 
represents reality and needs less information from the decision-
maker (Geldermann and Lerche, 2014). Further, TOPSIS needs 
just the criteria weightings as input from the decision-maker 
which is why the procedure is relatively easy to apply in practice. 
TOPSIS is carried out according to the procedure of Hwang and 
Yoon (1981). After calculating the efficiency values ci , the crite-
ria values and/or the criteria weightings can be varied to show the 
sensitivity of these parameters on the results (ceteris paribus). 
Thus, thresholds and benchmarks can be calculated that indicate 
which values are optimal to reach the best-case frontier for a cer-
tain alternative. By creating scenarios that determine specific val-
ues for the future also the effects of this on the efficiency of the 
considered alternative can be shown by adapting the parameter in 
TOPSIS.

Preliminary method validation. To check the applicability of 
the procedure a preliminary method validation was executed. 
Because a large data survey has not been carried out so far, the 
authors use average data on HTP archetypes identified by a litera-
ture review (cf. KIC InnoEnergy, 2015; Klemm et al., 2009; 
Reißmann et al., 2018; Stafford et al., 2017). It has to be men-
tioned that this preliminary calculation was just carried out to 
validate the model and the results are not reliable so far. Espe-
cially, the comparability of calculations made for data on produc-
tion costs or life cycle emissions need to be carefully proven for 
all considered technologies. For this exemplary case, such an 
extensive proofing was not carried out which is why the first 

results are not scientifically reliable yet. For the criteria weight-
ing an expert survey has to be carried out. Currently, the survey 
is not finished which is why “estimated” weightings have to be 
used for this validation. The estimated weightings result from lit-
erature information (cf. Reißmann et al., 2018) and first expert 
estimations made during a workshop in September 2016 in 
Leipzig, Germany (cf. DBFZ, 2016).

First, the technology fact sheet was created for the observed 
HTP archetypes and the corresponding reference system (see SI). 
Second, relevant criteria (“long-list”) were derived through the 
approach described previously (see SI). This “long-list” was fur-
ther concentrated on suitable criteria using the illustrated deci-
sion chart (Figure 2).

The resulting criteria and their corresponding weightings are 
shown in Table 7.

By using these criteria in TOPSIS for data of hydrothermal 
carbonization (HTC), hydrothermal liquefaction (HTL), hydro-
thermal gasification (HTG) and AD archetypes, the following 
values for the relative distances ci  result. The data are part of the 
SI.

Rank 1: HTG – ci -value of 0.66
Rank 2: AD – ci -value of 0.48
Rank 3: HTC – ci -value of 0.32
Rank 4: HTL – ci -value of 0.26
The exemplary results show that HTG is most beneficial 

under consideration of multiple techno-economic and environ-
mental attributes. This result seems robust because HTG has the 
best values regarding life cycle emissions and production costs. 
Both criteria have a relatively high weighting which shows the 
importance of these values. Although HTG has the lowest current 
technology readiness level (TRL) compared to the other alterna-
tives, the MCA procedure indicates that this technology is still 

Figure 1. Methodological sequence of multi-criteria analysis approach for assessing hydrothermal processes.
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promising. However, especially the weightings are of high 
importance. Thus, they have to be chosen very carefully. Figure 3 
illustrates the important influence of criteria weightings exem-
plary for TRL assuming a proportional increase of all corre-
sponding criteria weightings (sensitivity analysis).

Comparison of study findings to 
comparable work

One particular issue about this field of work is that up to this date, 
no further multi-criteria approaches have been developed for 
assessing the suitability of hydrothermal processing wet bio-waste. 
Thus, this work provides novel information on how to deal with 
this issue by using an assessment framework that considers multi-
ple attributes and specific requirements on HTP. However, as 
already mentioned in the introduction section several other studies 
assessed the hydrothermal treatment of wet bio-waste and residues 
using different assessment approaches mostly concentrating on 
just one dimension (e.g. life cycle assessment or economic assess-
ment). Such studies are important for the proposed MCA approach, 
because generated data on economic or environmental assessment 

can be used as input for the calculations if they are comparable to 
each other. However, none of these studies assessed HTP in a 
multi-dimensional way.

Only a few recent studies have proposed assessment 
approaches for biomass conversion systems considering multiple 
attributes. Suwelack and Wüst (2015) developed a unified 
appraisal framework for biomass conversion systems that 
includes a MCA approach based on standardized data and impact 
levels. The approach was tested on random data for three biomass 
conversion systems considering seven criteria on social, environ-
mental and economic issues. In general, this approach can be 
used to assess HTP if reliable data are available. However, the 
framework is not customized for HTP which is why the criteria 
are more general and specific methodological requirements for 
HTP evaluation are not considered. Very important criteria for 
HTP, for example, process water pollution levels, are missing. 
The study of Billig and Thrän (2016) proposed an MCA approach 
to assess different bio-methane technology options. Also this 
approach seems transferable to some HTP concepts, especially 
HTG which also produces bio-methane. However, also in  
this approach relevant attributes and requirements for HTP 

Figure 2. Decision chart for preliminary method application.

Table 7. Selected criteria for preliminary method application.

Criteria Unit Weighting  

Production costs EURct/kWh 20% Inputs
Life cycle emissions gCO2eq./MJproduct 18.5%
Technology readiness level − 40% Outputs
Material efficiency % kg 7.5%
Energy efficiency % MJ 9%
Calorific value of end-product MJ/kg dry matter 5%
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assessment are missing which further confirms the necessity of 
the tailor-made MCA framework proposed by this study. Other 
recent studies suggesting multi-dimensional assessment frame-
works for biomass conversion technologies (Fazlollahi and 
Maréchal, 2013; Gassner and Maréchal, 2009; Martínez and 
Narváez, 2016) are also lacking in terms of missing criteria and 
having less consideration of the requirements for HTP 
evaluation.

Future perspectives and practical 
implications

Only a few industrial scale applications of HTP plants have 
been implemented in Europe, which is particularly due to 
techno-economic difficulties (cf. Reißmann et al., 2018). 
Hence, the primary aim is to use this MCA tool for a compara-
tive evaluation of different scenarios that assume full-scale 
application of HTP under certain requirements. Using the MCA 
approach, these scenarios can be compared regarding several 
relevant criteria. By varying criteria values for these scenarios, 
efficiency ranges can be identified which further indicate prom-
ising target corridors for future technology development and 
research priorities. For example, these indications can help 
policy to decide on which solutions for HTP process water 
treatment public funding may focus on. In addition, decisions 
on regulatory adjustments, for example, for the standardization 
of HTP products, can be partly based on promising develop-
ment paths indicated by the MCA (e.g. energy carrier or mate-
rial application markets). For private investors, indications on 
promising future technology paths and corresponding criteria 
value ranges will help them to decide on investments for certain 
technological solutions considering specific requirements. In 
practice, the tool can be used for HTP site decisions (e.g. in 
relation to substrate availability), and decisions on plant scale 
and promising markets. However, the tool will become more 
relevant for practice if more industrial scale plants are estab-
lished. This is because the framework assumes that a function-
ing market exists and industrial scale plants operate under 
economic conditions.

Conclusion

This analysis proposed an MCA framework to assess the suitabil-
ity of options for the hydrothermal treatment of wet bio-waste. To 
better validate the applicability of the method, exhaustive data 
computations have to be made. A major advantage of the proce-
dure is that it needs relatively less input from the user. For exam-
ple, developing the criteria “long list” and criteria weightings 
must usually be executed just once and can be used for several 
analyses after. Thus, criteria derivation and weighting can be pro-
vided by experts before the user applies the approach for a case 
study or scenario analysis. TOPSIS is relatively easy to apply and 
the calculations can be made with Excel. However, the more cri-
teria and alternatives that are considered the complexity of calcu-
lations rises. Due to the relatively easy understandable approach, 
the results of the analysis are good to interpret and to communi-
cate to the target audience. However, also some shortcomings are 
connected to the approach. A specific disadvantage of TOPSIS is 
that criteria must at least be ordinally measurable with similar 
distances on the measurement scale. This is sometimes not given 
and thus such criteria would not be applicable in TOPSIS. 
However, this problem can be solved by applying height prefer-
ences (e.g. through utility functions). Further, data are sometimes 
not available for relevant criteria. This is especially reasoned in 
the novelty of the technologies that are connected to an insuffi-
cient data situation. Hence, it seems useful to enlarge the approach 
with fuzzy logic or by means of a complementary self-learning 
algorithm. Additionally, it is important to carefully check the pri-
mary data sources for the used criteria on their comparability 
(e.g. checking if comparable assumptions were made to calculate 
these data).
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Supplementary Information (SI) to article “How to identify 

suitable ways for the hydrothermal treatment of wet bio-waste? A 

critical review and methods proposal” 

 

Appendix A – Check of MCA methods on requirement fulfilment 

Analytical Hierarchy Process (AHP): 

Holistic nature Consideration of thermo-chemical and bio-chemical conversion paths: 

Yes – there are no assumptions of AHP that forbid this. 

Consideration of energetic and material treatment paths: 

Yes – there are no assumptions of AHP that forbid this. 

Multi 

dimensionality 

Consideration of quantitative techno-economic and environmental criteria: 

Yes – if data availability is given, all quantitative criteria can be considered.  

Consideration of qualitative techno-economic and environmental criteria: 

No/Yes – qualitative criteria can be used but must at least be measurable on an 

ordinal scale.  

Applicability Yes – the AHP is a relative complex method because mathematical knowledge is 

necessary to solve matrix calculations. However, several software programs can 

assist to solve the calculations. Because the AHP is often applied in science and 

practice the applicability must be given.   

Objectivity Involvement of expert feedback in criteria selection: 

No – the criteria selection is applied by the decision-maker, expert involvement 

is not an integral part. Also, current applications do not involve experts into the 

criteria selection. 

Involvement of expert feedback in criteria weighting: 

No/Yes – as suggested by Saaty, the original version of AHP does not need expert 

involvement for criteria weighting because this is made by the decision-maker. 

Current applications try to the involve experts through surveys (e.g. Delphi 

surveys). 

Adaptability  Yes – the procedure is linear, but adaptions of previous steps can be made if 

necessary. 

Benchmarking No/Yes – benchmarking is not part of the classic AHP. However, subsequent 

sensitivity analysis are sometimes applied to interpret the results of AHP. 

Through this form of analysis also benchmarks can be generated. 
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Decision-Making Trial and Evaluation Laboratory (DEMATEL): 

Holistic nature Consideration of thermo-chemical and bio-chemical conversion paths: 

Yes – there are no assumptions of DEMATEL that forbid this. 

Consideration of energetic and material treatment paths: 

Yes – there are no assumptions of DEMATEL that forbid this. 

Multi 

dimensionality 

Consideration of quantitative techno-economic and environmental criteria: 

Yes –quantitative criteria can be considered. 

Consideration of qualitative techno-economic and environmental criteria: 

Yes – because DEMATEL primary measures the interdependencies between 

criteria through expert estimations, it is not necessary that all criteria are 

quantitative. Hence also qualitative criteria can be considered.  

Applicability No/Yes – the procedure itself is relatively simple and needs no in-depth 

mathematical knowledge to be applied. However, because expert involvement is 

needed to estimate the interdependencies of criteria the effort is relatively high.  

Objectivity Involvement of expert feedback in criteria selection: 

No – criteria selection is not a part of DEMATEL. Given criteria are checked 

regarding their independencies.  

Involvement of expert feedback in criteria weighting: 

No – also criteria weighting is no part of DEMATEL. 

Adaptability  No/Yes – after expert estimations have been made it is very difficult to adapt the 

procedure (e.g. through introducing of new criteria). However, further 

estimations can be made if necessary, but this increases the effort considerable.  

Benchmarking No – benchmarking is no part of DEMATEL. 
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Preference Ranking Organization Method for Enrichment Evaluations (PROMETHEE): 

Holistic nature Consideration of thermo-chemical and bio-chemical conversion paths: 

Yes – there are no assumptions of PROMETHEE that forbid this. 

Consideration of energetic and material treatment paths: 

Yes – there are no assumptions of PROMETHEE that forbid this. 

Multi 

dimensionality 

Consideration of quantitative techno-economic and environmental criteria: 

Yes – if data is available, all quantitative criteria can be considered. 

Consideration of qualitative techno-economic and environmental criteria: 

No/Yes – because PROMETHEE uses preference functions for all criteria also 

qualitative criteria can be considered. However, they must be at least ordinal. 

Applicability Yes – several software applications can assist to solve the calculations.  

Objectivity Involvement of expert feedback in criteria selection: 

No – criteria selection is not a part of PROMETHEE. Criteria must be already 

given.  

Involvement of expert feedback in criteria weighting: 

No/Yes – a weighting procedure is not defined by PROMETHEE and can be 

selected by the user. Hence, experts can be involved or not.  

Adaptability  Yes – the procedure is linear, but adaptions of previous steps can be made if 

necessary. 

Benchmarking No/Yes – benchmarking is not part of the PROMETHEE. However, subsequent 

sensitivity analysis are sometimes applied to interpret the results. Hence, also 

benchmarks can be generated. 
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Quality Function Deployment (QFD): 

Holistic nature Consideration of thermo-chemical and bio-chemical conversion paths: 

No/Yes – there are no assumptions of QFD that forbid this. However, the house of 

quality (as comparison matrix between attributes of alternatives) is only useful for 

very similar alternatives because customer requirements are maybe not comparable.  

Consideration of energetic and material treatment paths: 

No/Yes – there are no assumptions of QFD that forbid this. However, the house of 

quality (as comparison matrix between alternatives) is only useful for very similar 

alternatives because customer requirements are maybe not comparable. 

Multi 

dimensionality 

Consideration of quantitative techno-economic and environmental criteria: 

Yes – due to that QFD simply sorts the criteria within a matrix and seeks for 

correlation (house of quality) all kind of criteria can be considered in general.  

Consideration of qualitative techno-economic and environmental criteria: 

Yes – due to that QFD simply sorts the criteria within a matrix and seeks for 

correlation (house of quality) all kind of criteria can be considered in general. 

Applicability No/Yes – QFD is a relative simple analytical method which can be used without 

complex mathematics. Generally no software applications are necessary. However, 

because the analysis is primary based on customer product expectations, a high 

effort for market research is necessary. Next to this, creating the house of quality is 

hard without detailed background knowledge on the procedure of QFD.  

Objectivity Involvement of expert feedback in criteria selection: 

No/Yes – usually the internal project members define the product functions as one 

side of criteria and the customer define their requirements as another part of criteria. 

An objective expert feedback on this selection is normally no part of QFD. 

Involvement of expert feedback in criteria weighting: 

No/Yes – prioritization of criteria is usually done by the team members and also not 

verified through expert feedback. However, also the team members are experts in 

their fields.  

Adaptability  No/Yes – QFD is no flexible procedure, because it only depends on creating the 

house of quality. However, further customer estimations or product functions can 

be added which makes the procedure in part adaptable. Including further 

alternatives that are not competitive to the primary alternatives is difficult because 

product functions as well as customer expectations may not match which makes 

them not comparable.  

Benchmarking No – a benchmarking of weightings or criteria at it is intended for the HTP method 

is no part of QFD. Also subsequent sensitivity analysis are usually not applied after 

QFD. 
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Technique for Order Preference by Similarity to Ideal Solution (TOPSIS): 

Holistic nature Consideration of thermo-chemical and bio-chemical conversion paths: 

Yes – there are no assumptions of TOPSIS that forbid this. 

Consideration of energetic and material treatment paths: 

Yes – there are no assumptions of TOPSIS that forbid this. 

Multi 

dimensionality 

Consideration of quantitative techno-economic and environmental criteria: 

Yes – if criteria are measurable on a cardinal scale all kind of quantitative 

criteria can be used. 

Consideration of qualitative techno-economic and environmental criteria: 

No/Yes – criteria must be cardinally measurable which is often not given for 

qualitative criteria. However, this can be met by using height preferences for 

creating at least ordinal scales with similar distances.   

Applicability Yes – TOPSIS is a very intuitive and relative simple procedure. No complex 

mathematics are necessary. Software applications are available for extensive 

calculations. 

Objectivity Involvement of expert feedback in criteria selection: 

No – expert feedback for criteria selection is no necessary part of TOPSIS. 

Involvement of expert feedback in criteria weighting: 

No/Yes – a weighting procedure is not defined by TOPSIS and can be selected 

by the user. Hence, experts can be involved or not. 

Adaptability  Yes – the procedure is linear, but adaptions of previous steps can be made if 

necessary. 

Benchmarking No/Yes – benchmarking is not part of TOPSIS. However, subsequent sensitivity 

analysis are sometimes applied to interpret results. Hence, also benchmarks can 

be generated. 
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Vise Kriterijumska Optimizacija I Kompromisno. Resenje (VIKOR):  

Holistic nature Consideration of thermo-chemical and bio-chemical conversion paths: 

Yes – there are no assumptions of VIKOR that forbid this. 

Consideration of energetic and material treatment paths: 

Yes – there are no assumptions of VIKOR that forbid this. 

Multi 

dimensionality 

Consideration of quantitative techno-economic and environmental criteria: 

Yes – all kind of quantitative criteria can be considered by VIKOR.  

Consideration of qualitative techno-economic and environmental criteria: 

No/Yes – qualitative criteria can be considered if they are at least measurable 

on an ordinal scale. 

Applicability No/Yes – VIKOR is more complex and therefore harder to understand than 

other comparable MCA methods which reduce the intuitive interpretation of 

results. However, several software applications can assist to solve the 

calculations which reduces the effort at least in part.  

Objectivity Involvement of expert feedback in criteria selection: 

No – expert feedback for criteria selection is no necessary part of VIKOR. 

Involvement of expert feedback in criteria weighting: 

No/Yes – a weighting procedure is not defined by VIKOR and can be selected 

by the user. Hence, experts can be involved or not. Usually, weights are defined 

due to preferences of the decision-maker.  

Adaptability  Yes – the procedure is linear, but adaptions of previous steps can be made if 

necessary. 

Benchmarking No/Yes – benchmarking is not part of VIKOR. However, subsequent sensitivity 

analysis can be applied to interpret results and generate benchmarks. 
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Appendix B – Exemplary filled sample technology “fact sheet”  

Evaluation purpose Assess the suitability of fictive HTP concepts on the use of wet biogenic 

residues. 

Geographic framework Germany. 

Time period No specific time period, because several data sets with different time 

frames were used for the fictive concepts. 

Description of 

considered technology 

concepts 

(1) Hydrothermal Carbonization concept  

Parameter Specification 

Substrate(s) Lignocellulose residues, 

sewage sludge, animal excreta 

Reactor type Continuous flow system 

Reactor pressure range 10-30 bars 

Reactor temperature range 160-250 °C 

Reaction time range 1-72 h 

End-product Hydro-coal 
 

(2) Hydrothermal Liquefaction concept 

Parameter Specification 

Substrate(s) Lignocellulose residues, 

sewage sludge, animal excreta, 

algae 

Reactor type Continuous flow system 

Reactor pressure range 40-200 bars 

Reactor temperature range 180-400 °C 

Reaction time range 10-240 min. 

End-product HTL-oil 
 

(3) Hydrothermal Gasification concept 

Parameter Specification 

Substrate(s) Lignocellulose residues, 

sewage sludge, animal excreta 

Reactor type Continuous flow system 

Reactor pressure range 230-400 bars 

Reactor temperature range 350-400 °C 

Reaction time range 5-10 min. 

End-product HTG-gas 
 

Reference system(s) Anaerobic Digestion (AD) as competitive system on substrate markets: 

 Parameter Specification 

Substrate(s) Lignocellulose residues, 

animal excreta 

Reactor type Continuous flow system 

Reactor pressure range Ambient pressure 

Reactor temperature range 32-65 °C 

Reaction time range 35-80 days 

End-product Biogas  
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System boundaries (1) Feedstock provision & substrate pre-treatment  (2) Conversion & 

Refinement  (3) Products & By-products  (4) Product Usage 

Check on data 

availability 

Data from scientific studies and technical reports. Data refers to specific 

case studies (e.g. modelled plants, demonstration and pilot plants, and 

laboratory tests) and average values.  
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Appendix C – Criteria “long list” 

Criteria Definition  Unit Relevant process 

step 

K.O. criterion (Fulfillment must be given for every assessment alternative) 

Dry matter content of 

substrates  

The relation of organic dry 

matter to water content of the 

substrate. Recent studies 

recommend an organic dry 

matter content between 10 to 30 

% for optimal processing. If this 

range is not fulfilled the 

considered substrate is not 

suitable and hence the alternative 

may be excluded from the 

analysis (Reißmann et al. 2018a). 

Percent of organic 

dry matter content 

Feedstock provision 

Input metrics/costs (to be minimized) 

Production costs Raw material costs and 

manufacturing costs of the 

product (e.g. hydro-coal) 

(Bronner 2013). 

Euro per functional 

unit 

Feedstock provision 

and conversion/ 

refinement 

Distance to suitable 

substrates 

Transport distance of suitable 

substrates from place of 

occurrence to treatment plant. 

Kilometer (km) Feedstock provision 

Pollution of process 

water 

Share of organic substances in 

residual water that occurs after 

hydrothermal processing (Fettig 

et al. 2015). 

mgO2/L (COD 

value) 

By-products 

Life cycle emissions Pollutant emissions occurring 

through the process steps relating 

to the system boundaries (ISO 

2006). 

Global Warming 

Potential (CO2 

equivalent) 

All process steps 

Output metrics/benefits (to be maximized) 

TRL Classification of the level of 

development of a considered 

technology according to ISO 

16290 (ISO 2013). 

Assessed on a scale 

from 1 to 9 

All process steps 

Material efficiency Relation of product output to raw 

material input (Eichhorn 2000). 

Percent of 

functional unit 

Conversion/ 

refinement 

Energy efficiency Relation of energy output to 

energy input (Eichhorn 2000). 

Percent of 

functional unit 

Conversion/ 

refinement 

Calorific value of 

product 

Maximum usable heat amount 

through the combustion of the 

end-product (coal, oil or gas) 

(Brandt 2004). 

Mega Joule (MJ) 

per functional unit 

Product Usage 

Carbon share of end-

product 

Share of carbon in HTC coal in 

relation to total mass volume. 

Percent Product Usage 

Share of recycled 

phosphorus 

Share of phosphorus that is 

recycled in relation to the total 

substrate feed-in. 

Percent Recycling 
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Appendix D – Applied data for preliminary calculations 

Definitions of data types 

 Specific data means that these values refer to exemplary processes and plants 

 Average data means that these values are the average of data from several (at least two) 

processes and plants 

 Generic data means that these values are the result of comprehensive meta studies and 

mostly typical for the whole process type 

 

Criteria Unit Data type Value(s) References 

Data on HTC 

Production costs EURct/kWh average 6.5 Reißmann et al. 2018 

Life cycle emissions gCO2eq./MJproduct specific 45 Reißmann et al. 2018 

TRL - generic 6.5 KIC InnoEnergy 2015 

Material efficiency % kg specific 16.5 GRENOL 2014 

Energy efficiency % MJ average 80 Klemm et al. 2009 

Calorific value of end-

product 

MJ/kg dry matter average 24.5 Reißmann et al. 2018 

Data on HTL 

Production costs EURct/kWh specific 11.8 Reißmann et al. 2018 

Life cycle emissions gCO2eq./MJproduct specific -5 Reißmann et al. 2018 

TRL - generic 7 Stafford et al. 2017 

Material efficiency % kg specific 80 Toor et al. 2010 

Energy efficiency % MJ average 78 Klemm et al. 2009 

Calorific value of end-

product 

MJ/kg dry matter average 35 Reißmann et al. 2018 

Data on HTG 

Production costs EURct/kWh specific 3 Reißmann et al. 2018 

Life cycle emissions gCO2eq./MJproduct specific -600 Reißmann et al. 2018 

TRL - generic 5 Vogel 2016 

Material efficiency % kg specific 26 Kumabe et al. 2017 

Energy efficiency % MJ average 76.5 Klemm et al. 2009 

Calorific value of end-

product 

MJ/kg dry matter specific* 21.65 Elsayed et al. 2015 

Data on AD 

Production costs EURct/kWh average 7.5 Bundesnetzagentur 2014 

Life cycle emissions gCO2eq./MJproduct average -140 Fehrenbach et al. 2009 

TRL - generic 9 Bundesregierung 2014 

Material efficiency % kg specific 13 Volkmann 2009 

Energy efficiency % MJ average 48 Reißmann et al. 2018 

Calorific value of end-

product 

MJ/kg dry matter average 31.25 FNR 2014 

 

*) calculated with conversion factor of conventional natural gas.  
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Abstract: To increase resource efficiency, it is necessary to use biogenic residues in the most efficient
and value-enhancing manner. For high water-containing biomass, hydrothermal processes (HTP) are
particularly promising as they require wet conditions for optimal processing anyway. In Germany,
however, HTP have not yet reached the industrial level, although suitable substrates are available
and technological progress has been made in previous years. This study aims to determine why
this is by identifying key factors that need to occur HTP development in Germany until 2030.
By using results of previous analyses within this context (i.e., literature review, SWOT analysis,
expert survey, and focus group workshop) and combining them with the results of an expert
workshop and Delphi-survey executed during this analysis, a comprehensive information basis
on important development factors is created. Fuzzy logic is used to analyze these factors in terms of
interconnections, relevance, and probability of occurrence by 2030. The results show that technological
factors, such as a cost-efficient process water treatment and increased system integration of HTP into
bio-waste and wastewater treatment plants, are given high relevance and probability of occurrence.
The adaptation of the legal framework, for example, the approval of end products from HTP as
standard fuels, has very high relevance but such adaptions are considered relatively unlikely.

Keywords: hydrothermal processes; Germany; fuzzy Delphi method; fuzzy logic cognitive map

1. Introduction

The German government has set a target of reducing the country’s annual greenhouse gas
emissions (GHG) by 50% in 2030 compared to the 1990 level [1]. To achieve this goal, it is necessary to
use scarce resources more sustainably, which also includes a more efficient use of biogenic residues.
However, currently, considerable amounts of biogenic residues and waste are being inefficiently used
or not used in Europe [2,3]. The treatment of wet and sludgy biomass is particularly challenging, as it
requires energy- and cost-intensive pre-treatment processes (e.g., drying, thickening, sanitization) to
become suitable for conventional biomass treatment paths (e.g., pyrolysis) [4]. However, to enhance
resource efficiency by sustainably utilizing residues and therefore, fostering progress towards a circular
and bio-based economy, it is worth striving for value-added use of such materials. This could also
reduce costs (e.g., for more expensive primary materials) and GHG (e.g., by substituting the energetic
use of fossil resources), save scarce natural resources (e.g., by recycling of nutrients like phosphorus
out of the residual flows) and thus promote climate protection [5–8].

For the last few years, hydrothermal processes (HTP) have gained attention as promising
technologies to manage wet biomass. HTP transform wet substrates into gaseous, liquid, or solid
high carbon and energy containing products via thermochemical conversion. The products can be
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used for several purposes, like direct use for energy production or as an intermediate for producing
agricultural and pharmaceutical chemicals [4,9,10]. For optimal operation, HTP need high water
containing substrates, which is why residues like sewage sludge and animal excreta are particularly
suitable [9,11].

Depending on the operational conditions, different HTP types occur. At temperatures between
160 and 250 ◦C, pressure conditions between 10 to 30 bar, and a residence time between 1 to 72 h,
hydrothermal carbonization (HTC) takes place. HTC is a coalification process that converts biomass
into hydro-char [12] to be used for energetic purposes, material applications, and as fertilizer or soil
conditioner [13]. At slightly higher temperatures (180 to 400 ◦C) and pressures (40 to 200 bar) but
lower residence times (10 to 240 min), hydrothermal liquefaction (HTL) occurs. HTL is a process that
transforms biomass into chemicals and bio-oils [14]. The products can be used for energy production
and chemical industry [9]. At supercritical conditions (375 to 500 ◦C, 230 to 400 bar) hydrothermal
gasification (HTG) takes place which usually needs less than 10 min for the reaction. Through HTG
biomass is converted into gaseous materials, especially methane and hydrogen, which are used for
energy and chemical industry [15].

Compared with other generally suitable biomass conversion processes (e.g., torrefaction, pyrolysis,
composting), HTP have some advantages. Compared to torrefaction, for example, HTC products
can achieve a higher energy density, energy yield, and combustion reactivity [16]. Additionally, HTC
can provide economic advantages. For example, a comparative study of HTC, anaerobic digestion,
and composting on the conversion of food waste showed that HTC performs economically best due to
its low residence time and less substrate pre-treatment [17]. Another study showed that the HTL of
algae can be advantageous compared to pyrolysis in terms of conversion yields and energy conversion
rates [18].

At a first glance, HTP seem well suited to the conversion of wet biomass into high carbon
and energy-containing products. Nevertheless, as a trade registry evaluation on HTP companies in
Germany showed, so far, the technology has not prevailed in Germany. Based on this, since 2008, only a
handful of new company foundations have been registered. This is in contrast with the general interest
in these processes, which can be measured in terms of the level of research and technological progress.
For example, according to a recent study, there are currently 15 patents on HTC in Germany [19].
Also, scientific interest in HTP is continuously increasing. According to Kruse and Dahmen [20],
numerous published studies in Scopus since 2009 contain the keywords “supercritical gasification”,
“hydrothermal liquefaction”, and “hydrothermal carbonization”. This ongoing interest indicates that
there is still high potential for HTP to become an innovative biomass conversion path. This has also
been confirmed by international developments. Research activities on HTP are a core issue of the Pacific
Northwest National Laboratories in the U.S., where some pilot plants are also in operation [21–23].
In addition, TerraNova Energy operates a larger HTC plant in China [24] and Ingelia in Spain [25].

Also, key metrics on HTP (e.g., the higher heating value (HHV) of products, the energy and mass
balance of processes, the carbon efficiency, and the specific investment and operating costs) indicate
that there is potential for HTP to be further developed at a large scale. For example, the HHV of
hydro-coal ranges from 24 MJ/kg (median) to 26 MJ/kg (maxima) [25–27]. In terms of the energy
efficiency of HTC (including all energetic losses during the process and without a utilization step)
there is also high variation—between 62 per cent (median) and 77 per cent (maximum) [28–30].

However, optimization of the technological, economic, and ecological features of HTP depends
on many parameters, such as heat recovery, applied catalysts, substrates used and their moisture
content, logistics as well as plant sizes [4]. An example is the connection between HTC plant sizes
and investment costs based on the manufacturers’ information. The specific investment costs tend to
decrease in relation to the capacity of the plants per additional ton of fresh matter biomass input (from
260 EUR/ton for 5000 tons capacity up to 50 EUR/ton for 80,000 tons capacity) [31–34]. So, economies
of scale can be already observed. Further, learning curve and scale effects through more experience
in the operation of plants on an industrial scale are crucial to achieving gradual optimization of
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essential parameters. Finally, if the parameters can be optimized, HTP will provide several advantages.
For example, the HHVs of the final products are generally higher than those of fossil reference
systems [4]. Greenhouse gas savings compared to fossil references may also be significant, depending
on the substrate used, the energy balance, and the subsequent product use [4].

So far, only a few studies have provided information on the future development of HTP in
Germany and Europe as well as the corresponding key factors. A study of the German National
Academy of Science and Engineering analyzed the potential system contributions of HTC and HTL
to the flexibility of a renewable energy system until 2023 in Germany [35]. It was identified that the
approval of HTC coal as a standard fuel and a corresponding fuel standard are of high importance.
Furthermore, they recommended the promotion of nutrient recycling and the development of a
cost-effective process water treatment procedure. They suggested the use of hydro-coal as an energy
carrier, soil additive, and industrial carbon carrier. For HTL it is considered critical that in Germany,
algae, which is a particularly suitable substrate, is largely missing. Nevertheless, they recommend
the support of nutrient recycling and the increase in quality of the liquid product [35]. De Mena
Pardo et al. [19] outlined the necessary factors for the establishment of HTC at the European level,
such as the abolition of the waste status of HTC products from waste biomass. They predicted
that hydro-coal will first become established on the energy markets and, in the long term, will also
occupy material markets. In terms of establishment in the energy sector, however, the “end of the
waste” characterization is crucial. Another recent paper [20] identified the integration of HTP into
bio-refineries as important future development strategy to generate synergies. Furthermore, the whole
value-chain must be addressed, also including stakeholders who have so far only been marginally
involved, like farmers. In a previous paper, we used a SWOT analysis to identify the most important
current barriers and possibilities for HTP in Germany [36]. The results indicated that the technological
readiness of the plant, including the presence of high energy and material efficiency as well as the
presence of a suitable process water treatment procedure are factors of high importance. In addition,
the overall costs for producing the end-product and the competitive nature of sales markets are seen
as important threats. Also, the GHG are of high relevance throughout the process and can be primarily
viewed as an opportunity if HTP can mobilize their potential for emission savings as compared with
fossil reference systems.

However, although HTP has some promising features as a resource efficient conversion technology
for wet biomass, no scaling-up is happening in Germany. Thus, this study aims to identify and
prioritize key development factors for HTP that should occur in Germany by 2030 and points out
their interconnections using a structured expert participation process. Furthermore, the probability
of occurrence of these factors is estimated. This study also aims to provide important information
on barriers that must be dealt with to allow HTP to contribute to climate and resource protection in
the future.

Specifically, we used the Fuzzy Delphi Method (FDM) and Fuzzy Cognitive Mapping (FCM) in
this study. The Delphi method is a forecasting procedure based on the opinions of anonymous experts
collected through a multi-stage survey process. It aims to systematically foster expert consensus about
uncertain developments [37]. A Delphi survey consists of several rounds of interviews. The first
round usually asks for the assessment of uncertain factors and events. The following rounds then ask
the experts to revise or confirm their assessments based on the results of the previous rounds [38].
As this method contains some disadvantages (e.g., relatively low consistency of expert opinions,
high enforcing effort, and sometimes modifications to individual opinions in order to reach consistent
total opinions), we expanded it by using the Fuzzy Delphi Method (FDM) for the final evaluation.
With FDM, expert opinions are integrated with fuzzy numbers based on the cumulative frequency
distribution and fuzzy integrals. Thus, FDM applies triangulation statistics to determine the distance
between the levels of consensus within the expert panel [39]. Furthermore, the FDM needs just a small
survey panel to deliver reliable results—an advantage for studies with a small number of suitable
participants [40]. FCM is a model consisting of nodes that indicate the most relevant factors (in FCM
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the term “concepts” is used) of a decisional environment and relationships between them (arcs and
edges). The analytical background of FCM is based on the structure and function of concept maps,
including graph theory-based analyses of pairwise structural relationships between the model factors.
It is therefore a decision-support tool which originated a combination of fuzzy logic and artificial
neural network theory [41]. It aims to define the important factors relevant to a specific community
and the relationships between them as well as optionally testing scenarios in which these factors are
varied to see how the system might react under a set of possible conditions [42]. An adjacency matrix
A represents the interconnections between model factors. On that basis, the number and directions of
edge relations are transformed into quantitative values between −1 (inhibitory effect) and +1 (positive
effect) [43]. In particular, FCM can be used to model complex systems with high uncertainty and less
available empirical data [44], which, based on our experiences within this working field, is the case for
this study’s topic.

2. Materials and Methods

The key factors were primarily developed based on qualitative and quantitative expert evaluations
and information from relevant literature. Figure 1 gives an overview of the study design.
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The methodological framework is, in part, similar to the Hybrid Delphi method [45]. However,
it also includes further methodological elements (literature review, impact analysis, fuzzy logic). Based
on a comprehensive literature study [4], a moderated focus group workshop on the success and risk
factors of HTP development in Germany was carried out. The results were validated and underpinned
by a subsequent expert survey. A total of 41 experts, primarily scientists, plant manufacturers and
plant operators from Germany and Switzerland, participated in the workshop. The expert survey
panel consisted of feedstock suppliers, technology developers, technology users, retailers, product
users, policy makers, and researchers from Germany. Within the workshop, the experts were asked
about certain success and risk factors for HTP in Germany that were then collected, categorized,
and discussed. In a subsequent expert survey, the results of the workshop were further validated by
asking about the strengths, weaknesses, opportunities, and threats for HTP development in Germany.
For the detailed procedure and the results of the SWOT analysis, see [36].
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Based on these initial findings, a “long list” of important factors of HTP future development,
their relationships, and interactions was derived through an expert scenario workshop. Six HTP
researchers from the German Biomass Research Centre (DBFZ) participated. The influence analysis
performed in this step served as the basis for the development of a Fuzzy-logic Cognitive Map (FCM),
which provides an overview of all identified factors/concepts and their relationships. To construct
the FCM, however, further expert feedback from the surveys and information from the literature
review were included. In this analysis, we used multiple-valued logic scalar numbers from the discrete
set {−1; −0.5; 0; +0.5; +1} to determine the impact relations (arcs and edges) between FCM nodes
(concepts). The open source web-based application Mental Modeler was used to create the FCM and
identify the factors/concepts importance and connectedness [46].

Based on the results of the expert workshop and the FCM, a questionnaire for a Delphi survey was
compiled and sent to 51 HTP experts via an online survey. The FCM factors/concepts (Appendix A,
Table A1) served as essential inputs for the preparation of the Delphi questionnaire. However, the use
of too many survey items makes cognitive assessments more difficult and thus tends to reduce the
reliability of the results, which is why it was decided to integrate particularly factors/concepts with a
high FCM centrality (cf. Table 1) into the survey. Nevertheless, following feedback received during the
first round of interviews, several items were added to the second questionnaire.

The survey participants were selected based on their expertise. Selection criteria were as follows:
(1) academic or professional recommendations, (2) well-known authors of relevant publications on the
specific subject, (3) stakeholder group representative, and (4) estimated professional experience within
the working field. These criteria were selected based on the suggestion by Stevenson [47] and Hasson
et al. [48] to mainly include experts in the field of study (indicated through criteria 1, 2 and 4) as well
as different stakeholders (criterion 3). The international participants were asked about developments
of HTP in the European context, since they were assumed to have, at best, limited knowledge on the
German situation. However, both the German and the European situations are comparable. Figure 2
gives an overview of the composition of the participants, their expertise, and the nations represented
in the first round of interviews. The relative distribution in the second round of the survey (n = 12)
was very similar.

Two rounds were conducted in this study. Twenty-seven experts participated in the first round
(response rate 1st round: 53%). Of these 27 people, twelve participated in the second round (response
rate 2nd round: 44%). The following item-categories were part of the survey (assessment scales are
explained in the Appendix B, Table A2): (1) relevance of factors for HTP development in Germany by
2030, (2) relevance of risks for HTP development in Germany by 2030, (3) estimated probabilities of
factor occurrence by 2030 and (4) certainty in assessing per item-category.

Besides evaluating with scales, the experts had the opportunity to explain their selection and
assessment in text fields. For both rounds, 22 comments on capacity development, five comments
on success factors, four notices regarding risks, and eleven notes on the development of biomass
utilization rates were provided. By means of qualitative content analysis (i.e., differentiation between
pros and cons, frequencies of keywords, identification of consensus statements) essential statements
were summarized (Appendix C, Table A3). The hints of the first round were also included in the
preparation of the questionnaire for the second round.
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Figure 2. Participants of the first Delphi-survey round.

After the first round, an interim evaluation took place, which showed the degree of agreement in
the expert assessments and the frequency of distributions of the first tendencies by descriptive statistics
(median, standard deviation, interquartile range (IQR)). The questionnaire for the second round of the
survey was adjusted, taking into account the results from round 1. After executing the Delphi survey,
we analyzed the results by using the FDM which consists of the following steps [49]:

1. Determining experts (see previous explanations).
2. Selecting a linguistic scale to be converted into a fuzzy-scale (cf. Appendix B, Table A2).
3. Calculating the difference between the average fuzzy number (m) and each experts’ fuzzy number

(n) per item by using following formula:

d (m̃, ñ) =

√
1
3

[
(m1 − n1)2 + (m2 − n2)2 + (m3 − n3)2

]
(1)

4. Determining the threshold value for consensus/dissent of the expert panel:

In accordance with [38], we chose a threshold of d ≤ 0.2 to make a decision as to whether the
experts had reached consensus on the item. Next to this, the frequency of expert agreement is presented
as the percentage of d ≤ 0.2 per item-category in relation to all items. A value of ≤75% represents
panel consensus.
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5. Defuzzification:

To determine a ranking of the most relevant/probable factors per item-category, it is necessary
to defuzzify the fuzzy values into a crisp-value (Ai). For this, we used the following formula in
accordance with [38]:

Ai =
1
3
(m1 + m2 + m3) (2)

3. Results

3.1. Factors for HTP Development in Germany by 2030 and Their Relations

The development factors and risks were primarily derived on the basis of the expert workshop
and the aforementioned previous SWOT analysis executed by the authors [36]. Above all, the expert
workshop served as the basis for identifying areas of interest. The factors were then further
differentiated and backed up with information from the literature. The whole list of factors is part of
the appendix (Table A1).

The factors were assessed in the expert scenario workshop by means of an impact matrix with
regard to their mutual influences. Based on this, a Fuzzy-logic Cognitive Map (FCM) was constructed.
Figure 3 shows a part of the overall FCM for the relationships of the factor “Regular Fuel Recognition”.
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Fuel Recognition” on other system concepts (expert knowledge-based FCM created with the Mental
Modeler).

Since FCM is based on graph theory, which provides a wide variety of indices, we can also
make statements about the structure of the system as well as gain information about the functions of
individual factors. Table 1 lists the most relevant metrics for the developed FCM including a short
definition of the indices.
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Table 1. FCM indices and their scores in the hydrothermal processes (HTP) model.

FCM Indices Explanation Indices in HTP Model

N (concepts) Indicates the total number of system factors [50,51]. 24

N (connections) Indicates the total number of connections between the system concepts [50,51]. 235

N (transmitters) Indicates the total number of concepts that influence other concepts but are not
affected by other concepts [50,52]. 0

N (receiver) Indicates the total number of concepts that are influenced by other concepts but
have no effect on them [50,52]. 1

N (ordinary) Indicates the total number of concepts that affect and are affected by other
concepts [50,52]. 23

Density
This index shows the networking degree of the system, i.e., the number of
concepts and edge relations. A high density indicates that several probable
management options exist [50,52]. The density can have a value between 0 and 1.

0.43

C/N
The number of connections divided by the number of concepts. A low C/N
score indicates a high degree of system connectedness [50,51]. Low is relative in
this context, because it must be seen in context with other comparable systems.

9.79

Outdegree & Indegree Information about the concept degree as a transmitter (driver), receiver (output),
or force that conveys effects (ordinary) [53].

Highest Outdegree (highest driving
force): Regular Fuel Recognition (11.5)

Highest Indegree (highest receiving
force): Customer Acceptance (10)

Centrality Indicates how strongly a concept influences the whole system [53,54]. Highest Centrality: Regular Fuel
Recognition (13.5)

Complexity Illustrates the degree of model accuracy and measures the degree to which
outcomes of driving forces are considered [50,51]. Infinite
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3.2. Results of the Fuzzy-Delphi Method

Table 2 summarizes the results of consensus or dissent after the second round. For this purpose,
the determined fuzzy values (d) are given, where d ≤ 0.2 is the threshold value. Grey shaded values are
the factors where consensus was reached. In addition, the percentage of expert consensus is specified.
This indicates how many item evaluations of the entire panel in relation to the total items did not
exceed the threshold. Here, a value of at least 75% is the consensus criterion.

Table 2. Results on the fuzzy evaluation regarding expert consensus/dissent after round 2.

No. Thematic Category Consensus/Dissent after Round 2 (n = 12)

dfactor drisk dprobability

Political-legal factors

1 Regular fuel recognition 0.178 0.183 0.204
2 Investment and promotion 0.277 0.241 0.136
3 “End of waste” regulation 0.170 0.221 0.263
4 Product certification 0.153 0.221 0.164
5 Thresholds 0.300 0.239 0.288
6 Approval procedures 0.267 0.239 0.236
7 Product standardization 0.204 0.170 0.136
8 Substrate standardization 0.159 - 0.192
9 Process standardization 0.083 0.265 0.213

Economic factors

10 Sales markets 0.187 0.085 0.181
11 Procurement markets 0.209 0.170 -
12 Substrate availability 0.187 0.186 0.166
13 Disposal costs 0.209 0.293 0.199
14 Material applications 0.226 - 0.235
15 Foreign markets - 0.208 -

Technological factors

16 Process water treatment 0.170 0.204 0.136
17 System integration 1 0.115 - 0.162
18 System integration 2 0.229 - 0.187
19 Nutrient recycling 0.178 - 0.236
20 Learning effects 0.200 0.140 0.200
21 Accidents - 0.265 -

Ecological factor

22 Life cycle performance 0.378 - -

Mean di 0.207 0.205 0.193

Percentage of expert consensus 72% 71% 76%

Table 2 shows that after the second survey round, majority consensus was achieved in at least one
item-category (factors, risks, probabilities). However, for thresholds, approval procedures, material
applications, foreign markets, accidents, and life cycle performance, no consensus was reached at
all. The panel consensus (last row of Table 2) was not reached regarding factors and risks (<75%),
which likely shows that the expert assessments tended to be furthest apart for these item-categories.

However, compared to the first round, the second round showed a significant increase in expert
consensus. The expert consensus rate increased by 28 percentage points in the assessment of the
relevance of the factors, by 19 percentage points in the assessment of the relevance of the risks,
and even, by 33 percentage points in the probability of occurrence estimates between the rounds.
For some items, there were considerable differences. In particular, the relevance of process standards
showed a very strong difference between rounds 1 and 2 (∆d f actor = −80%). This could be due to the
fact that in the second round, experts who regard process standards as equally relevant in particular
were still involved. This reveals one of the weaknesses of the Delphi method, as there is sometimes a
high drop-out rate (in this case 56%) between the rounds that can cause changes in the results due to
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differences in the survey panel, rather than solely due to adjustments based on the previous round’s
results. However, one basic assumption of the Delphi method is that expert consensus increases due
to the adaption of evaluation based on the previous round’s results, which is why we basically also
assumed this for the consensus increase in this study. For the factors/concepts in which a consensus
was reached (grey shaded in Table 2), Table 3 shows the values (Ai) after defuzzification. Based on
this, the items’ fuzzy logic-based relevance/probability can be ranked. Factors/concepts that are not
greyed out in Table 3 were no longer considered in the corresponding categories, as a dissent prevailed
in the expert assessments. We differentiated between:

• A f = defuzzified value for factors

• Ar = defuzzified value for risks
• Ap = defuzzified value for probabilities
• Ac = defuzzified value for certainty in assessment
• Rank f = Rank in relation to other factors

• Rankr = Rank in relation to other risks
• Rankp = Rank in relation to other probabilities

Table 3. Ranking of consensus items in terms of relevance and probabilities after defuzzification.

No. Factors with Consensus in at Least One
Item-Category

Af Rankf Ar Rankr Ap Rankp

Political-legal factors

1 Regular fuel recognition 8.2 3 5.8 2 n.c. n.c.
2 Investment and promotion n.c. n.c. n.c. n.c. 2.9 9
3 “End of waste” regulation 8.6 2 n.c. n.c. n.c. n.c.
4 Product certification 7.4 5 n.c. n.c. 3.8 8
7 Product standardization n.c. n.c. 5.6 3 3.9 7
8 Substrate standardization 2.6 10 - - 2.0 10
9 Process standardization 2.8 9 n.c. n.c. n.c. n.c.

Economic factors

10 Sales markets 4.6 8 2.8 5 6.1 4
11 Procurement markets n.c. n.c. 4.4 4 - -
12 Substrate availability 5.0 7 2.8 5 6.8 1
13 Disposal costs n.c. n.c. n.c. n.c. 6.2 3

Technological factors

16 Process water treatment 8.0 4 n.c. n.c. 6.8 1
17 System integration 1 9.0 1 - - 6.0 5
18 System integration 2 n.c. n.c. - - 4.6 6
19 Nutrient recycling 8.2 3 - - n.c. n.c.
20 Learning effects 6.4 6 7.4 1 6.4 2

Certainty in the assessment of the item category
according to the experts’ own statements: Ac

6.4 5.6 5.0

“n.c.” = no consensus reached; “-“ = factor was not part of this item-category.

Table 3 shows that the assessments of the relevance of occurrence of a factor (Af) and the risk
of non-occurrence (Ar) are very different. For example, the absence of learning effects (e.g., lack of
reference facilities) is considered to be a significant risk (7.4). However, the relevance of this factor
is also still high (6.4) but only in the midfield relative to other factors. The uncertainty according to
the panelists’ own assessments (Ac) is highest in the probabilities and lowest in the relevance of the
factors. However, the values are close to each other, which is why the assessment certainty of the item
categories is largely the same.

Regarding the relationships between mutually relevant factors and corresponding probabilities
(grey shaded in Table 3), only a few factors show high values (i.e., near to 10) for both. Figure 4
visualizes the relationships.
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Only two factors were considered to be highly relevant and also highly probable. Namely,
the introduction of a cost-effective process water treatment and the integration of HTP into existing
bio-waste and wastewater treatment plants.

4. Discussion

Although HTP has already been shown to have an advantage on some points (e.g., HHV, energy
yields, decreasing specific investment costs while increasing capacity), the analysis showed that there
are several factors related to the development of HTP in Germany that have hindered successful
development so far. Above all, political-legal aspects are strongly inhibiting a scale-up in Germany,
but adaptions in the near future are considered unlikely. This shows that the experts involved
think that the legislator or the political decision-makers have relatively little ambition to promote
the development of HTP more strongly. This is already evident today as some German HTP plant
manufacturers and operators are already focusing on foreign markets (especially China). Nevertheless,
HTP could considerably contribute to the achievement of a bio-based economy by efficiently converting
currently difficult-to-use wet biomasses into valuable products. However, the adaptation of the legal
framework is urgently needed for this. If the national legislator does not take action, an important
step could also be the development of an EU regulation on the end-of-waste status of waste biomass
products, similar to those already introduced for scrap iron, scrap steel, and scrap aluminum as well as
for certain types of glass. One of the reasons for this is that the legal uncertainty for plant operators
and product users is very high, which, in turn, increases transaction costs [55]. Due to the fact that
HTP products cannot be used as standard fuels, the energy market cannot be fully penetrated, which
significantly reduces the product’s market potential. However, there are still many problems at the
technological level. So far, Germany is still a technology leader in the field of HTP (e.g., as indicated
through patents) [19]. Based on results of this analysis, it is politically recommendable to work actively
on measures that ensure that HTP are used economically in Germany and do not become exclusively
an export product as this could cause related companies to relocate their headquarters abroad.

In addition, technological advancements are considered to be relevant drivers and are also estimated
to be relatively likely. Above all, a mature technology for the cost-effective treatment of the process
water is urgently needed to reduce the overall related costs and thus increase the cost-effectiveness
of the process. In addition, an efficient treatment process for polluted water is also needed to aid in
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environmental protection. Potential for promoting the development of HTP is seen particularly in system
integration, for example, into existing bio-waste and waste-water treatment plants (WWTP). The resulting
synergies can, in particular, save logistics costs and directly link the locations of substrate occurrence,
conversion technology and, in some cases, customers. The experts probably regard technological
advances as likely because corresponding research and development is very active. In particular,
cost-effective solutions for the process water treatment are being intensively researched [56–58], which is
why suitable solutions are likely to be expected in this area in the foreseeable future. As an overview,
Table 4 summarizes the main results of this study, i.e., the most crucial barriers and potential for future
HTP development and the spread of technology as well as suggestions for possible measures to reach
the potential benefits for HTP and reduce the barriers to achieving these.

Table 4. Consensual key potential benefits and barriers for HTP development in Germany by 2030 and
potential measures.

Key Development Factor(s) Potential Measure(s) to Reach Potential Benefits or Reduce Barriers

Key potentials

Political-legal

An end-of-waste regulation is being
introduced for HTP products (i.e., products
from bio-waste, sewage sludge etc.), and
HTP energetic products (e.g., hydro-coal)
are recognized as standard fuels.

The European or national legislation has to be adjusted accordingly. This means
that a regulation must be introduced that allows the energetic use of products
from waste biomass. Such a regulation could be very similar to regulations
already being introduced for broken glass and steel scrap.

Technological

Integration of HTP into existing bio-waste
treatment plants and waste-water treatment
plants (WWTP) including nutrient recycling

Research on suitable technological solutions for the most efficient integration of
HTP into such plants must be fostered. Concepts from biorefinery research
could possibly be used as a basis for good solutions. However, relevant
stakeholders, especially plant operators, must be closely involved (e.g.,
with common workshops) to reduce reservations and develop good concepts
together. An important issue for bio-waste plant operators and WWTP
operators could be nutrient recycling as this would provide an additional
economic product (next to HTP products itself), which is highly demanded
(esp. phosphorus [59])

Key barriers

Political-legal

Unambitious politics and obstructive
legislation, i.e., no introduction of “end of
waste” directive or alternative (e.g., product
certification).

Relevant political decision-makers have to be motivated for legislative action.
Scientifically-based policy advise (e.g., Scientific Advisory Boards) could be an
important instrument to motivate decision-makers. To create a suitable
argumentative basis for this, research on the economic and ecological benefits
of HTP is necessary but must also be translated into easily understandable
messages and communicated most efficiently. Next to this, political
decision-makers must be integrated into several activities on HTP to increase
attention on the technology. Best-practice cases (business cases) could also be
useful to show the functioning and advantages of the technology.

Technological

The understanding and knowledge of the
process will not increase considerably
(missing learning effects, for example,
through missing reference
systems/business cases).

To reduce this barrier, investment and promotion activities are especially
important (e.g., by public or private funders and investors). Through this,
larger pilot and demonstration plants can also be developed which may help to
increase the understanding of the processes on larger scales. Such reference
plants are important to give investors an impression of how the technology
works, which, in turn, could generate further investments. Learning effects will
occur if sufficient experience with the operation of larger plants is made.
Business cases can serve as important information basis for new projects.

As mentioned in the introduction, few studies have focused on this issue so far. However,
the results of this study are in line with the findings of the similar ones (e.g., the importance of having
an efficient process water treatment procedure and the approval of HTP products from residues and
waste as standard fuels) which confirms the high importance of the identified key factors. The novel
aspect of this study, however, is that in addition to the relevant literature, extensive expert knowledge
was included and evaluated in a structured manner. In addition, this study initially depicted all
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relevant key factors and did not focus on selected aspects directly at the start of the analysis, which is
why the methodology can be regarded as non-normative. The application of FCM shows, for the
first time, how the individual factors are related. The use of fuzzy logic also takes into account the
bias of qualitative assessments (e.g., due to different participants’ estimations of “important” and
“unimportant”). Although the studies mentioned in the introduction showed very similar results to
this analysis, some only considered individual technologies and not the entire technology platform
(e.g., [19]) or they focused on very specific contexts (e.g., the contribution of HTC and HTL to the
flexibility of a renewable energy system) (e.g., [35]), which is why not all relevant system factors were
considered. The aforementioned studies did not prioritize the potential benefits and barriers to HTP
development like this analysis, but they also classified them into categories and highlighted the high
importance of the already mentioned legal and technological factors. Hence, this study confirms the
entirety of the results of the mentioned studies and substantiates them both in terms of content (expert
knowledge) and by using an alternative methodology (fuzzy logic).

The applied methodology to derive particularly relevant factors, risks, and probabilities of
occurrence is unique in this form. Although other technology assessments have applied the Fuzzy
Delphi method [60], Fuzzy-logic Cognitive Mapping [61], or SWOT analysis [62], they did not use
such a combination. The advantage of this method is the versatile participation format that greatly
increases the objectivity of the results overall, since several correction and feedback loops are part of it.
The combination of workshops and surveys within this study makes it possible for both conduction of
the discourse (workshops) and collection of anonymized content (Delphi survey) to occur. Although
other comparable studies also applied participation as a qualitative methodological element [63],
the particular kind of methodological combination used (cf. Figure 1) has not previously been used in
the literature. The core of information filtering into relevant and probable factors is the Fuzzy Delphi
Method. With a total of 27 experts from different stakeholder groups in the first round, this Delphi
survey achieved a high level of representativeness, since there are very few HTP experts in the study
area anyway. The number of participants is an extremely important factor in achieving meaningful
results, so it is strongly recommended that experts are already mobilized before a study of this type is
begun. Through the use of fuzzy logic, it became possible to bypass some disadvantages of the classical
Delphi method. In particular, the different types of assessment by people on the basis of linguistic
scales can be easily circumvented by fuzzy scales [64]. Another key element of this analysis was the
application of the FCM method. Again, fuzzy logic was used to translate qualitative expert assessments
into a model that represented the overall system of factors. In this study, the mapping was conducted as
part of a workshop with six experts. We preferred a smaller group to ensure discussion and to prevent
over-standardization of the workshop. A standardization of the mapping, for example, via online
formats or targeted queries, would certainly allow a larger number of participants. The creation of
an FCM requires a high level of cognitive performance, but it helps to structure the complexity of a
system to identify feedback loops or so-called “hidden patterns”. Identification of the dependencies of
the factors must be carried out carefully, as this is the central way for the system effect to be identified.
Nevertheless, the results are meaningful as a “scoreboard” and do not guarantee objective accuracy,
as this is not the aim of a qualitative analysis like this one anyway. Looking into the future always
involves high uncertainty and particularly shows ranges and opportunities.

5. Conclusions

In this study, we asked for the reasons why HTP does not yet prevail on a large industrial scale in
Germany. By means of a literature- and expert knowledge-based fuzzy logic analysis, we identified
key factors and prioritized them. The study results show that political and legal adjustments to the
relevant framework conditions as well as technological improvements are seen as very important
for the positive future development of HTP in Germany. This especially includes the key potential
benefits shown in Table 4. These factors are strongly connected to other system components which
shows their high impact on the whole system. The results can serve as important information for
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HTP stakeholders in Germany, especially political decision-makers, entrepreneurs, and researchers.
However, the limitations of the study are that the findings are only valid for the German situation.
Other nations require their own comparative studies. Additionally, the study was highly qualitative
in nature due to the insufficient information and data situation in this field of research. Hence,
some uncertainty remains which is, nevertheless, very common for analyses that deal with future
developments. In the future, the identified factors and interconnections shall serve as a basis for
upcoming scenario case studies focusing on the system and plant levels (also, in part, quantitively).
In this way, we hope to gain even more insight into desirable technological, economic, ecological,
and political-legal developments for HTP by 2030 in Germany.
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Appendix A. List of Relevant System Factors for HTP Development in Germany

The factors are formulated in positive form and thus represent a desired event; the corresponding
negative formulation represents a risk. However, the non-occurrence of a factor is not always
considered as a risk. In addition, risks were identified that do not necessarily represent a development
factor in their inverse effect (accordingly, they are not formulated in positive form). Such factors are
marked with asterisks.

Table A1. “Long list” of factors for HTP development in Germany by 2030.

xi Tagging Factors/Concepts Explanation

Political-legal factors/concepts

1 Regular fuel
recognition

HTP energetic products (e.g., hydro-coal) are recognized as standard fuels. This factor is
strongly connected to the fourth factor as this represents an alternative requirement for the
recognition of HTP products as standard fuels.

2 Investment and
promotion

Investment incentives (e.g., policy support instruments) and/or technology and research
funding programs for HTP are being introduced or, rather, promoted.

3 “End of waste”
regulation

An end-of-waste regulation is being introduced for HTP products (i.e., products from bio-waste,
compost, etc.). Comparable regulations already exist for broken glass and steel scrap.

4 Product certification
Official recognition certificates for HTP products are introduced and issued accordingly by the
competent authorities. This helps to reduce uncertainty in practice in terms of the classification
of HTP products as fuels.

5 Thresholds Thresholds relevant to HTP (e.g., the Federal Immission Control Act) are relaxed as far as
reasonably possible.

6 Approval procedures Approval procedures for new HTP plants are accelerated which might save costs during the
planning and construction phase.

7 Product
standardization

The quality of HTP products is standardized (e.g., fuel standard). This helps to reduce
uncertainties with HTP products and sales markets (e.g., for product users) and enhances
transparency.

8 Substrate
standardization *

The quality of HTP substrates is standardized (e.g., ISO standard). This helps to reduce
uncertainties with HTP procurement markets (e.g., for substrate users) and
enhances transparency.

9 Process
standardization

Process standards are introduced (e.g., ISO standard). This helps to reduce uncertainties for
plant constructers and operators and enhances transparency.
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Table A1. Cont.

xi Tagging Factors/Concepts Explanation

Economic factors/concepts

10 Sales markets
The competition on HTP relevant sales and product markets (e.g., energy carriers, fertilizers,
substitutes for chemical products) decreases. Thus, the relative market share for HTP firms
might be increased.

11 Procurement markets
The competition in HTP relevant procurement markets (e.g., animal excreta, sewage sludge)
decreases. Thus, more usable substrates for HTP might be available, possibly near to the plant
location.

12 Substrate availability

The available and technically usable amount of substrates increases. Thus, in centralized
concepts, plants might be able to handle higher capacities, or in decentralized concepts, more
substrates will be available near to the plant location assuming that substrate availability
increases equally in Germany.

13 Disposal costs
Disposal costs for HTP substrates per mass unit (e.g., ton) are increasing. Thus, revenue for the
disposal of such substrates might also increase which would generate additional income for
HTP plant operators.

14 Material applications *

HTP products are primarily used for material applications (e.g., as fertilizer, functional carbon).
This could result if energy markets remain unprofitable due to legal barriers (missing
recognition as regular fuels). Products for HTP might be primary applied in markets for
bio-based products. However, this factor strongly depends on missing legal adjustments
regarding fuel recognition according to experts’ opinions.

15 Foreign markets **

HTP plant manufacturers and operators concentrate almost exclusively on foreign markets.
This might be a result of missing market demand, an insufficient or rather braking legal
framework, low relative market shares for HTP products in related markets or missing political
incentives and willingness to promote HTP in Germany.

Technological factors/concepts

16 Process water
treatment

A cost-efficient and sustainable solution for process water treatment is being developed and
applied nationwide. This might promote the overall economic (and ecological) performance of
HTP as the process water treatment is currently also a relevant cost (economic) factor that might
make HTP concepts uneconomic.

17 System integration 1 *

HTP plants are increasingly being integrated into bio-waste and wastewater treatment facilities.
Thus, the locations of substrate occurrence and treatment facilities could be integrated optimally,
leading to lower logistic costs. Also, other synergies might be generated, e.g., process water is
treated directly by the wastewater treatment plant on site.

18 System integration 2 * HTP are increasingly being integrated into bio-refineries. This could also generate considerable
synergies (e.g., cascade usage networks).

19 Nutrient recycling *

The nutrient recovery is enhanced. Especially, nutrient recovery from the process water might
be promising as the process water must be treated anyway. Due to political and legal
frameworks (2017 amendment of sewage sludge ordinance) that especially require phosphorus
recovery from sewage sludge, this might be a useful strategy.

20 Learning effects

The process understanding and knowledge increases (learning effects, for example, through
reference systems/business cases). According to the learning curve effect theory, this will
especially reduce the cost per unit of product which is why this is also, in part, an economic
factor [65].

21 Accidents **
Accidents with existing facilities reduce trust in the safety of the technology. This might
especially affect plant operators and society which is why this factor is strongly connected to
social factors.

Ecological factor/concept

22 Life cycle
performance *

Research on climate and resource protection by HTP will be intensified. Results on this will also
successively improve the life cycle performance due to new insights (e.g., the stability of HTC
coal in the soil as CO2 sink). This might especially promote social acceptance of the technology.
However, the life cycle performance is strongly connected to several other factors (e.g., reduced
pollutants in process water after treatment) which is why this factor is just one part of
promoting the life cycle performance.

Social factors/concepts

23 Customer acceptance

Customer acceptance of HTP increases. This might be the result of technological progress,
legal adjustments that promote HTP, higher transparency regarding HTP product quality (e.g.,
end-product customers), substrate quality, and process performance (e.g., customers for
facilities/plant operators).

24 Social acceptance The social acceptance of HTP increases or rather, society regards HTP as a resource efficient
technology for future biomass conversion.

* Factor is not considered as a risk if it not occurs; ** Solely represents a risk.
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Appendix B. Scale Relations

Table A2. Linguistic variables of Delphi survey item-categories and corresponding Likert and
fuzzy scales.

Linguistic Scale Likert Scale Fuzzy Scale

For item categories “relevance of factors” and “relevance of risks”

extremely relevant 5 0.6 0.8 1
very relevant 4 0.4 0.6 0.8

relevant 3 0.2 0.4 0.6
barely relevant 2 0 0.2 0.4

irrelevant 1 0 0 0.2

For item category “probability of factors”

very high 5 0.6 0.8 1
high 4 0.4 0.6 0.8

middle 3 0.2 0.4 0.6
low 2 0 0.2 0.4

very low 1 0 0 0.2

For item category “assessment (un)certainty”

very certain 5 0.6 0.8 1
certain 4 0.4 0.6 0.8

relative certain 3 0.2 0.4 0.6
uncertain 2 0 0.2 0.4

very uncertain 1 0 0 0.2

Appendix C. Expert Statements in the Delphi Survey

Table A3. Summarized comments and hint of experts in the Delphi survey.

Category Key Statements of the Experts

Arguments for a plant
capacity increase

• Capacity will increase for plants that currently only exist on a pilot scale.
• Capacity expansion due to legal adjustments and additional economic

opportunities (e.g., additional revenue from rising carbon allowances due to
an end of waste regulation for bio-coal).

• Easy scalability of the systems due to modular design.
• Learning effects, experience, and technological advances (for example,

process water treatment solutions).
• Scale effects and scale advantages.
• HTC plants must be based on wastewater treatment plants of the size 3–4,

therefore requiring a capacity of 50,000 metric tons biomass input per year.

Arguments against a
plant capacity increase

• For the most relevant fields of HTP application (mainly the disposal sector),
the current capacity is sufficient.

• For wet biomass, only relatively small amounts are meaningful for ecologic
(CO2) and economic (costs) transport, which limits the capacity.

• The plants are used decentral, because substrate availability is crucial. That
limits the capacity.

Notes on relevant
success factors

• HTP must be evaluated holistically to show its potential benefits.
• Regulatory and political measures need to be implemented.

Notes on relevant risk
factors

• Today’s expectations of the technology will be not fulfilled (especially
economically and ecologically).

• The environmental effects are misjudged.
• The pressure of competition is increasing.
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Table A3. Cont.

Category Key Statements of the Experts

Arguments for an
increase in the biomass
utilization rate

• Environmental benefits compared to landfilling and anaerobic digestion
promote HTP deployment, but it has to be backed by legislation
and incentives.

• Growing environmental awareness.

Arguments against an
increase in the biomass
utilization rate

• No significant technological advancements.
• Municipal users do not engage in HTP.
• The spatial distribution of substrates limits their efficient use.
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A B S T R A C T   

The hydrothermal conversion of wet biomass into carbon-rich products is credited with a high potential. But in 
Germany corresponding large scale facilities have not been established yet. In order to investigate why this is the 
case, we have identified key factors for the development of hydrothermal processes (HTP) in Germany in pre-
vious works. Based on this, this study presents three scenarios of HTP development in Germany by 2030 that 
represent different combinations of key development factors considering high probability and relevance of 
occurrence as well as risks in case of factors non-occurrence. Using fuzzy cognitive mapping, connections be-
tween the factors are modelled. Further, the system is analysed on its reaction to the scenarios, so that important 
impacts can be identified. A punctual result is, that for the scenario including most relevant key factors, a 
normative and economic stabilization of the system is observable. This is above all reasoned in the assumed 
supporting legal framework. Thus, this path is the most suitable for a successful HTP development in Germany 
according to this analysis.   

1. Introduction 

For the future establishment of a resource-efficient circular- and bio- 
economy, the most efficient use of biogenic residues is of great interest 
[1–6]. Hydrothermal processes (HTP) are currently credited with a high 
potential to lead to a more efficient use of wet biomass. HTP are ther-
mochemical processes that convert wet biomass under certain pressure 
and temperature conditions into bio-coal, bio-oil and biogas, which are 
suitable for energetic and material applications [7]. HTP are classified as 
shown in Table 1: 

Unlike solid residues, wet biomasses require expensive pre-treatment 
processes (e.g., drying and thickening) before they are suitable for most 
biomass conversion processes [7], which is why simple and less costly 
treatment paths (e.g., combustion) are usually applied [16]. Regarding 
resource efficiency, such conversion paths are not optimal, because they 
do not exploit the complete energetic and material substrate potential 
[1]. 

Hence, HTP seems better suited to efficiently converting wet biomass 
into energy- and carbon-rich products. However, the technology has so 
far not been successful in Germany [17]. In a previous study [18], we 
identified opportunities and risks of HTP development in Germany. The 

benefits of HTP include the lower carbon footprint and higher energy 
efficiency of the processes compared to alternative methods (e.g., 
anaerobic digestion). Barriers arise due to a lack of experience in in-
dustrial continuous operation and constraints in the current legal 
framework (e.g., legal waste status of the solid product of HTC). We used 
these results to derive relevant key factors for HTP development in 
Germany until 2030 and their occurrence probabilities. Fig. 1 gives an 
overview of the methodological process. 

The identification and categorization of the key factors was based on 
a SWOT analysis and expert workshop with impact analysis. From these 
analyses, a fuzzy cognitive map (FCM) was created (presented later in 
this study). Further, a Delphi survey with 51 European HTP experts was 
executed and evaluated using fuzzy-logic. Nevertheless, due to the 
qualitative nature of the methodology, uncertainties remain regarding 
the identified factors (e.g., regarding completeness, assessment of rele-
vance and probability of occurrence). However, the authors’ prepara-
tory work is the only source of information of this kind; so far, no 
comparable research results have been available. Various feedback 
loops and the consistent use of information ensured that all relevant 
factors were identified and assessed as far as possible. 

Based on the results of this process, a list of key factors for HTP 
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development in Germany by 2030 resulted [17]. Table 2 summarizes the 
factors and provides information about the factors’ estimated relevance 
for the future development of HTP (relevance of occurrence), risks in 
case of non-occurrence and probabilities of occurrence. Not all of the 
factors pose a development risk if they do not occur. In addition, some 
factors are not development drivers but rather risks. Corresponding 
factors are marked with asterisks and defined in the notes below the 
table. 

Based on the information in Table 2, this work aims to map the 
system of factors and analyse their reaction on HTP scenarios, that are 
descriptions of possible future situations, combining a network of 
influencing factors. Scenarios depict possibilities and thus include a high 
degree of uncertainty in the assessment of future developments [21–24]. 
To illustrate the contribution of the energetic use of biomass to the 
renewable energy system, for example, several scenario analyses have 
already been conducted in Germany [25,26]. HTP has not been part of 
such studies. One reason is that the technology has not reached indus-
trial maturity in Germany and therefore does not currently make any 
appreciable contribution to the renewable energy system. Nevertheless, 
a study by the German National Academy of Science and Engineering 
concludes that HTC and HTL could make an important contribution to 
the renewable energy system by 2023, closing the gap between com-
bustion, gasification and pyrolysis and the microbiological processes 
[27]. 

Apart from the mentioned study, there is hardly any research into the 
future of HTP in Germany. Instead HTP research currently focuses on 
process optimization [28,29] and techno-economic and ecological an-
alyses [30–32]. Predictions are therefore dependent on many un-
certainties and driven by various assumptions. A trend projection based 
on historical data is not possible for HTP, as there are insufficient data. 
Nevertheless, scenarios can be useful to learn more about the overall 
system behaviour and important factors and patterns. Additionally, they 
can reveal relationships and possible developments. Hence, the results of 
this study can help not only to produce recommendations for 
decision-makers in politics, science, industry and civil society, but also 
to identify “hidden patterns” and self-reinforcing feedbacks in the 
system. 

2. Materials and methods 

2.1. Fuzzy cognitive maps for system modelling 

The relationships and connections of the factors in Table 2 were 
modelled to illustrate the system relationships using FCM, which is a 
tool for representing the complex characteristics of non-linear dynamic 
systems, which may not be supported by a deterministic mathematical 
model [33]. Fuzzy signed graphs are used to model events and values as 
a collection of concepts (i.e., fuzzy sets that represent the factors), by 
forging a causal link between them [34,35]. Due to their flexibility, 
adaptability and the intuitive way they are constructed, FCMs are 

increasingly used in various scientific disciplines [36–38] and are an 
important part of soft computing research [35]. An advantage of an FCM 
approach over hard computing approaches (e.g., system dynamics) is 
that it is tolerant of imprecision, uncertainty and approximation. Soft 
computing approaches such as FCM are well suited to handling highly 
complex (non-linear, multimodal, high-dimensional, etc.), poorly 
structured or ill-defined problems [39]. 

Another reason we decided to use this approach is that other studies 
have used FCMs to determine future technology development or have 
recommended them for this purpose. For example, Amer et al. applied 
FCMs to determine scenarios for the wind-energy sector in Pakistan to 
create a technology roadmap [40]. Jetter reviewed applications of FCMs 
and described them as being especially suitable for scenario planning 
and forecasting of technology trends [41]. 

A standard FCM is defined by a set of functions ðX; W; C; fÞ [32,34]:  

� X ¼ fx1; x2; …; xng, which represents the set of n concepts. They 
form the nodes of the graph.  
� W : ðxi; xjÞ→ where wij is a function of X � X to K→½ � 1;1� associating 

wij to a pair of concepts ðxi;xjÞ, with wij denoting a weight of directed 
edge (magnitude) from xi to xj; if i 6¼ j; otherwise, if wij is equal to 
zero, then i ¼ j. Thus, W ðX�XÞ ¼ ðwijÞ 2 Kn�n is an adjacency ma-
trix, denoted in the following as A.  
� C : xi → CðtÞi is a function that computes the activation degree Ci 2 R 

for each concept xi referring to a discrete time t ¼ f1;2; …; Tg.  
� f : ​ R→I represents the transfer function, which represents the 

multiple causal impacts on a specific concept for the previously 
defined activation period. 

Depending on how the influence of one factor on the other is to be 
estimated, the weights wij are set differently:  

� wij > 0, i.e., positive causality,  
� wij < 0, i.e., negative causality,  
� wij ¼ 0, i.e., no causal relation. 

We used pentavalent logic for the weightings’ causalities with scalar 
values:  

� � 1: strong negative causality,  
� � 0.5: negative causality,  
� 0: no causality,  
� 0.5: positive causality,  
� 1: strong positive causality. 

To calculate the concept values in progress, the following formula is 
used as activation rule: 

Table 1 
Classification of hydrothermal reactions (based on [8], updated with current data).  

Hydrothermal reaction Temperature 
[�C] 

Pressure 
[bar] 

Residence time Main product References 

Hydrothermal carbonization (HTC)  
190–230 10–30 30 min up to several hours Bio-coal/char 9, 10, 11 

Hydrothermal liquefaction (HTL) 
Low temperature 220–250 40–200 Several minutes Bio-oil 10, 12 
High temperature >250–400 >40–200 Several minutes Bio-oil (usually higher yields than for low-temperature) 11, 13 
Hydrothermal gasification (HTG) 
Sub-critical 280–374 <221 Seconds up to several 

minutes 
Mainly CH4 8, 14, 15 

Supercritical >374–800 >221 Seconds up to several 
minutes 

CH4 at temperatures between 400 and 550 �C and H2 at temperatures 
> 550 �C 

14, 15 

Aqueous phase 
reforming 

200–280 15–50 Several hours H2, CO2 and alkanes from oxygenates 8, 14  
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Cðtþ1Þ
j ¼ f

0

B
B
B
B
@

Xn

i¼1

i6¼j

CðtÞi wij

1

C
C
C
C
A

(1)  

where n represents the number of concepts, CðtÞi describes the activation 
degree of concept xi at the t-th time step, Cðtþ1Þ

j correspondingly repre-
sents the value of the concept Cj at the time t þ 1 and wij represents the 
weighting of the causal connection of the corresponding concepts. 

For the preparation of the FCM, we used information on the re-
lationships between the factors from previous work [7,11,17,18]. Based 
on this, we carried out an expert workshop which was attended by six 
German scientists working on HTP. In a moderated group discussion, all 
influencing factors were evaluated regarding their effects on one 
another and themselves using an impact analysis [20]. An impact matrix 
developed during the workshop was verified based on the information 
from the previous work. On that basis, the FCM adjacency matrix A was 
created. 

2.2. Scenario construction and consistency check 

The factors’ relevance of occurrence, risks in case of non-occurrence 
and probabilities were used to construct the scenarios for HTP devel-
opment in Germany. Scenario 1 incorporates the factors with high 
probability according to Table 2, scenario 2 incorporates the factors 
with high relevance of occurrence, and scenario 3 considers the probable 
factors, excluding those with a high risk in the event of non-occurrence. 
The combinations of factors were selected to reflect the most likely 
positive development (scenario 1), the most desirable development 
(scenario 2) and the most likely negative development (scenario 3). 

To consider how independent the factors are in their appearance, the 
scenarios were checked for consistency. Consistency can range from 
total inconsistency (both projections never occur together) to absolute 
mutual support (both projections will most likely always coincide) [42]. 
For this check, a consistency matrix representing the impact values ac-
cording to the FCM scalar values for the factor combinations was con-
structed. Table 3 shows the scale relations between the adjacency matrix 
and the consistency matrix. 

To identify whether the scenario combinations are consistent, we 
calculate average consistency values per scenario. For this, the following 
steps were performed: 

(1) For every scenario, a consistency matrix C representing the de-
gree of consistence was created.  

(2) For every matrix, the relevant vectors c*
ij ¼

0

@
cij
…
cnj

1

A; i > j; i 2 N;

i 2 N were selected and the average consistency per vector was 
calculated as cij ¼

1
n
Pn

i¼1cij  

(3) Finally, the overall average per scenario was calculated as cons ¼
P

cij

nj 

The procedure described above is in part based on suggestions from 
Ref. [22]. An average consistency value (cons) per scenario which is 
close to 3 indicates that the factor combinations are consistent. If no 
consistency is reached, the adjacency matrix may be adapted because it 
serves as the basis for the consistency matrix. 

2.3. Scenario-based system analysis 

Following the steps in sections 2.1 and 2.2, the scenarios were 
applied to the FCM to show how the system reacts. To illustrate the 
system reaction for each scenario, the factors can be set at a value be-
tween þ1 (strong positive concept change) and � 1 (strong negative 
concept change). Within this analysis, a strong impact (þ1) was 
distinguished from a less strong impact (þ0.5). Negative concept change 
was not applied, as all scenarios assume a positive concept change. The 
relative change in the system was displayed through a bar graph indi-
cating how the system might react in a given scenario. We used the 
sigmoid function to generate the variations of concepts, because many 
complex systems show a progression from small values at the start that 
accelerate and approach a peak. It is usual for such system assessments 
to use sigmoid functions if an explicit mathematical model is absent 
[42]. Additionally, sigmoid FCMs are well suited to qualitative problems 
that require evidence of the increase, decrease or stability of a concept, 
especially for strategic decisions based on scenarios [43], which is the 
case for this study. The system factor dynamics were calculated as fol-
lows [44]:  

(1) An adjacency matrix A was created representing the concepts’ 
interconnections and intensity of causal interrelations: 

A¼

0

@
w11 ⋯ w1m
⋮ ⋱ ⋮

wn1 ⋯ wnm

1

A (4) 

Fig. 1. Methodological steps to identify and categorize key factors for HTP development in Germany [adapted from 17].  
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Table 2 
Important factors of HTP development in Germany [adapted from 17].  

xi  Tagging Explanation Relevance of 
occurrence 

Risk in case of non- 
occurrence 

Probability of 
occurrence 

Political-legal factors 
x1  Regular fuel 

recognition 
HTP energetic products are recognized as standard fuels. This factor is strongly 
connected to the fourth factor as this represent an alternative requirement for the 
recognition of HTP products as standards fuels. 

High High Uncertain 

x2  Investment and 
promotion 

Investment incentives and/or technology and research funding programs for HTP are 
being introduced or rather promoted. 

Uncertain Uncertain Low 

x3  “End of waste” 
regulation 

An end-of-waste regulation is being introduced for HTP products (i.e. products from 
bio-waste etc.). 

High Uncertain Uncertain 

x4  Product certification Official recognition certificates for HTP products are introduced and issued 
accordingly by the competent authorities. This helps to reduce uncertainty for 
practice in terms of classification of HTP products as fuels. 

Middle Uncertain Low 

x5  Thresholds Thresholds relevant to HTP (e.g. Federal Pollution Control Act) are relaxed as far as 
reasonably possible. 

Uncertain Uncertain Uncertain 

x6  Approval procedures Approval procedures for new HTP plants are accelerated which might save costs 
during the planning and construction phase. 

Uncertain Uncertain Uncertain 

x7  Product 
standardization 

The quality of HTP products is standardized. This helps to reduce uncertainties on 
HTP product and sales markets (e.g. for product user) and enhances transparency. 

Middle High Low 

x8  Substrate 
standardization* 

The quality of HTP substrates is standardized. This helps to reduce uncertainties on 
HTP procurement markets (e.g. for substrate user) and enhances transparency. 

Low – Low 

x9  Process 
standardization 

Process standards are introduced. This helps to reduce uncertainties for plant 
constructers and operators and enhances transparency. 

Low Uncertain Uncertain 

Economic factors 
x10  Sales markets The competition on HTP relevant sales and product markets (e.g. energy carriers, 

fertilizers, substitutes for chemical products) decreases. Thus, the relative market 
share for HTP firms might be increase. 

Low Middle Middle 

x11  Procurement 
markets 

The competition on HTP relevant procurement markets (e.g. animal excreta, sewage 
sludge) decreases. Thus, more useable substrates for HTP might be available, also 
near to the plant location. 

Uncertain Middle Uncertain 

x12  Substrate 
availability 

The available and technically useable amount of substrates increases. Thus, in 
centralized concepts, plants might handle higher capacities. Or in decentralized 
concepts, more substrates will be available also near to the plant location assuming 
that substrate availability increases equally in Germany. 

Low Middle High 

x13  Disposal costs Disposal costs for HTP substrates per mass unit (e.g. ton) are increasing. Thus, 
revenues for dispose such substrates might also increases which would generate 
additional income for HTP plant operators. 

Uncertain Uncertain High 

x14  Material 
applications* 

HTP products are primarily used for material applications (e.g. as fertilizer, 
functional carbon). This could result if energy markets remain unprofitable due to 
legal barriers (missing recognition as regular fuels). Products for HTP might be 
primary applied on markets for bio-based products. However, this factors strongly 
depends on missing legal adjustments regarding fuel recognition according to expert 
opinions. 

Uncertain – Uncertain 

x15  Foreign markets** HTP plant manufacturer and operators concentrate almost exclusively on foreign 
markets. This might be a result of missing market demand, an insufficient or rather 
braking legal framework, low relative market shares for HTP products on related 
markets or missing political incentives and willingness on promoting HTP in 
Germany. 

Uncertain Uncertain Uncertain 

Technological factors 
x16  Process water 

treatment 
A cost-efficient and sustainable solution for process water treatment is being 
developed and applied nationwide. This might promote the overall economic (and 
ecological) performance of HTP as the polluted process water treatment is currently 
also a relevant cost (economic) factor which might make HTP concepts uneconomic. 

Middle Uncertain High 

x17  System Integration 
1* 

HTP plants are increasingly being integrated into bio-waste and wastewater 
treatment facilities. Thus, the location of substrate occurrence and treatment facility 
could be integrated optimally which leads to lower logistic costs. Other synergies 
might be generated, e.g. process water treatment directly by the wastewater 
treatment plant on site. 

High – Middle 

x18  System Integration 
2* 

HTP are increasingly being integrated into bio-refineries. This could also generate 
considerable synergies (e.g. cascade usage networks). 

Uncertain – Middle 

x19  Nutrient recycling* The nutrient recovery is enhanced. Especially, nutrient recovery from the process 
water might be promising as the process water must be treated anyway. Due to 
political and legal frameworks (2017 amendment of sewage sludge ordinance) that 
especially require phosphorus recovery from sewage sludge, this might be a useful 
strategy. 

High – Uncertain 

x20  Learning effects The process understanding and knowledge increases (learning effects, for example 
through reference systems/business cases). According to learning curve effect theory 
this will especially reduce costs per unit of product which is why therefore a techno- 
economic factor [19]. 

High High High 

x21  Accidents** Accidents with existing facilities reduce trust in the safety of the technology. This 
might especially effect plant operator and society which is why this factor is strongly 
connected to social factors. 

Uncertain Uncertain Uncertain 

Ecological factor 
x22  Life cycle 

performance* 
Research on climate and resource protection by HTP will be intensified. Results on 
this also successively improve the life cycle performance due to new insights. This 

Uncertain Uncertain Uncertain 

(continued on next page) 

D. Reißmann et al.                                                                                                                                                                                                                              



Biomass and Bioenergy 138 (2020) 105588

5

(2) The initial vector state was denoted as follows: 

X!
0
¼ðx1

o x2
o … xn

oÞ (5)    

(3) The scenario-based values of the concepts (initial state changes) 
were calculated with an activation function ðf ðxÞÞ, in this case 
the sigmoid function. For this, the initial concept states were 
varied according to the corresponding scenario: 

X!
tþ1
¼ f
�

X!
tþ1

* A
�
¼
�
x1

tþ1 x2
tþ1 … xn

tþ1� (6)   

(4) The state changed throughout the processes. The inference pro-
cess stopped when stability was reached. The final vector state 
showed the effect of concept changes on the whole system of 
concepts. 

3. Results 

3.1. FCM for HTP system factors 

Based on the process presented in Fig. 1, we created the following 
adjacency matrix A that represents the interconnections of the concepts. 
The matrix is based on assessments from the expert workshop in which 
six HTP experts from the German Biomass Research Centre and the 
corresponding author participated (cf. Fig. 1). In the workshop, the 
participants assessed the causalities between the individual factors 
qualitatively. Based on this, an impact matrix was created, which was 
finally transferred to the adjacency matrix shown in Table 4. Further 
details are described in Ref. [17]. 

The FCM also represents these interconnections, but in a visualized 
form. The map was created with the online software Mental Modeler 
[45]. For transparency reasons, we appended a description of how the 
model can be rebuilt based on the adjacency matrix using Mental 
Modeler (see Appendix). 

To give an impression of the complexity of the FCM, Fig. 2 shows a 
part of the map for political-legal concepts. We decided to show this part 
of the FCM because the political-legal concepts have the highest impact 
of all the concepts on the overall system [45–47]. 

The numerical values represent the weight wij of the directed edge of 
each concept pair. It can be seen that “Regular fuel recognition” in 
particular has a strong influence on other concepts, indicated by the 
various relations marked “þ1”. In general, the occurrence of this 
concept positively influences other system concepts. The weight “0”, 
which represents no causal relation between the concepts, is not 
visualized. 

3.2. HTP development scenarios by 2030 

Based on the methodology described in section 2.2, the scenarios 
presented in Table 5 were created. 

The respective factor combinations indicate which of the factors 
listed in Table 2 occur in the respective scenario. The first scenario in-
cludes mostly technological changes, and so it is referred to as the 

Table 2 (continued ) 

xi  Tagging Explanation Relevance of 
occurrence 

Risk in case of non- 
occurrence 

Probability of 
occurrence 

might especially promote social acceptance into the technology. However, the LC 
performance is strongly connected to several other factors (e.g. reduced pollutants in 
process water after treatment) which is why this factor is just one part of promoting 
the LC performance. 

Social factors 
x23  Customer 

acceptance 
Customer acceptance of HTP increases. This might be the result due to technological 
progress, legal adjustments that promote HTP, higher transparency regarding HTP 
products quality (e.g. end-product customers), substrate quality and process 
performance (e.g. customer for facilities/plant operator). 

Uncertain Uncertain Uncertain 

x24  Social acceptance Social acceptance on HTP increase or rather society takes HTP as resource efficient 
technology for future biomass conversion stronger into account. 

Uncertain Uncertain Uncertain 

Explanation of asterisks: 
* According to expert estimations, this factor is not considered as a risk if it not occurs. The corresponding field in the table is therefore filled with "-". 
** According to expert estimations, this factor solely represents a risk. Hence, occurrence will have a negative effect. 
Additional notes:  
1) For the relevance, risks and probabilities of the factors that are described as “uncertain”, no expert consensus was reached in the mentioned Delphi survey [cf. 17], which is why these 

factors estimations were classified as uncertain.  
2) In the referenced study [17], the factors relevance and probabilities are classified by a ranking. In the present work, we use an easier understandable verbal classification based on this 

ranking, i.e. High (Rank 1–3), Middle (Rank 4–6), Low (Rank > 6).  
3) The underlying ranking was created for each individual category using the fuzzy Delphi method, which is based on an expert Delphi survey among 51 European HTP experts. There 

were two rounds of surveys (1st round: 27 responses; 2nd round: 12 responses). For all categories (i.e. “Relevance of occurrence”, “Risk in case of non-occurrence”, “Probability of 
occurrence”) the factors in the original questionnaire were assessed using a Likert scale from 1 (e.g. less relevant) to 5 (e.g. high relevant) assessed by the experts. The results were 
transferred to a fuzzy scale [cf. 20], evaluated by FDM and transferred to a ranking according to the result (see footnote 2). According to the questionnaire sent, the categories 
mentioned here are defined as follows:  

� Relevance of occurrence: Events or factors that are considered to be particularly important, if the future development of HTP in Germany is to be pushed (e.g. construction of industrial 
plants).  

� Risk in case of non-occurrence: Events or factors whose non-occurrence is considered to be particularly problematic, if the future development of HTP in Germany is to be pushed.  
� Probability of occurrence: Events or factors that are estimated as particularly likely to occur by 2030. 

Table 3 
Scale adaption of FCM scale into consistency matrix scale.  

Consistency matrix linguistic meaning Consistency 
scale 

FCM scale 

Total inconsistency: both projections never occur 
together. 

1 not 
detectable 

Partial inconsistency; i.e., the two projections 
influence each other. Their common occurrence 
affects the credibility of the scenario. 

2 � 0.5; � 1 

Neutral or independent of each other; i.e., the two 
projections do not affect each other and their 
appearance does not affect the credibility of the 
scenario. 

3 0 

Mutual benefit; i.e., the two projections may well 
occur in a scenario. 

4 0.5 

Very strong mutual support; i.e., due to the 
occurrence of the one projection, the occurrence 
of the other projection can be expected. 

5 1  
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Table 4 
Adjacency matrix: FCM factors and concepts relationships according to expert knowledge and relevant literature [own presentation].  

xji  x1  x2  x3  x4  x5  x6  x7  x8  x9  x10  x11  x12  x13  x14  x15  x16  x17  x18  x19  x20  x21  x22  x23  x24  

x1  0 1 1 � 1 1 1 1 0 0 � 0.5 0 � 0.5 � 0.5 � 0.5 � 0.5 1 0 0 0 0 � 0.5 0 0.5 1 
x2  0 0 0 0 0 0 0 0 0 � 0.5 0 0 0 0 0 0 0.5 0.5 0 0.5 0 0 0 0 
x3  1 0 0 � 1 1 0.5 0.5 0.5 0.5 � 0.5 � 0.5 � 0.5 � 0.5 � 0.5 � 0.5 1 0 0 0 0 0 0.5 0.5 1 
x4  � 1 0 � 1 0 1 1 1 0 0 0 � 0.5 0 � 0.5 � 0.5 � 0.5 0.5 0 0 0 0 0 0 0 1 
x5  0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
x6  0 0 0 0 0 0 0 0 0 0 0 0 0 0 � 0.5 0 0.5 0.5 0 0 0 0 0.5 0 
x7  0 0 0 0 0 0 0 0 0 � 0.5 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5 
x8  0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0.5 0 0 0 0 0 0.5 0.5 0.5 
x9  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5 � 0.5 0 0.5 0.5 
x10  0 0 0 0 0 0 0 0 0 0 0 0 0 0 � 0.5 0 0 0 0.5 0 0 0 0.5 0 
x11  0 0 0 0 0 0 0 0 0 0 0 0 � 0.5 0 0 0 0 0 0 0 0 0 0 0 
x12  0 0 0 0 0 0 0 0 0 0 0.5 0 0.5 0 0 0 0 0 0 0 0 0 0 0 
x13  0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
x14  0 0 0 0 0 0 0 0 0 0 0 � 1 0 0 0 0 0 0 0 0 0 0 0 0.5 
x15  0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 
x16  0 0 0 0 0 0.5 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 
x17  0 0 0 0 0 0.5 0 0 0.5 0 0 0 0 0 0 0 0 0.5 1 0 0 0.5 0.5 0.5 
x18  0 0 0 0 0 0.5 0 0 0.5 0 0 0 0 0 0 0 0.5 0 1 0 0 0.5 0.5 0.5 
x19  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 0 0 0 1 0.5 0.5 
x20  0 0 0 0 0 0.5 0 0 0.5 0 0 0 0 0 � 0.5 0 0 0 0 0 0 0.5 1 0.5 
x21  0 0 0 0 0 � 0.5 0 0 0.5 0 0 0 0 0 0 0 0 0 0 � 0.5 0 0 � 1 � 1 
x22  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0.5 
x23  0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
x24  0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0  
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“technological action” (TA) scenario. The second scenario includes also 
legal changes and is thus named the “legal and technological action” 
(LTA) scenario. The substrate and disposal cost increases are factors that 
are not directly influenced by specific actions, which is why the last 
scenario is named the “no action” (NA) scenario. 

As mentioned in section 2, when considering the system reactions, 
we distinguish between strong (þ1) and weak (þ0.5) impacts of the 
factors. It should be noted that for factors that either occur or fail to 
occur, no distinction can be made between strong and weak impacts. In 
this study, this point concerns only the legal framework conditions, as 
these are either introduced or not; we cannot make a substantiated 
distinction between weak and strong impacts in the legal framework 
conditions. 

The following matrices were used to calculate the average consis-
tency value for each scenario (cf. cons in Table 5) according to formulas 
(2) and (3). 

Cprobable ¼

x12
x13
x16
x20

0

B
B
B
B
@

x12 x13 x16 x20
3 4 3 3
3 3 3 3
3 3 3 3
3 3 3 3

1

C
C
C
C
A

Crelevance¼

x1
x3
x17
x19
x20

0

B
B
B
B
B
B
@

x1 x3 x17 x19 x20
3 5 3 3 3
5 3 3 3 3
3 3 4 5 3
3 3 3 3 3
3 3 3 3 3

1

C
C
C
C
C
C
A

Crisk ¼
x12
x13

�
3 4
3 3

x12x13 �

3.3. FCM system reaction to scenarios 

We want to emphasize once again that the analysis is semi- 
quantitative and the results are primarily based on expert knowledge 
and not on quantitative data. The quantification step uses the mathe-
matical procedure of the FCM explained in section 2. It should be noted 
that the variations represent corresponding changes until 2030, and 
some factors do not refer to the actual state. This is because certain 
factors are currently not observable. Fig. 3 shows the system reaction per 
scenario. 

4. Discussion 

4.1. Interpretation of system reaction to scenarios 

The TA (hI) scenario has a relatively small impact on the system and 
affects just five factors. Thus, the system generally reacts robustly to this 
scenario, which suggests a stable development that, apart from the 
scenario factors and the factors influenced, corresponds to the status 
quo. The economic factors show the strongest reactions. The competi-
tion in the procurement markets is decreasing, which can be explained 
by the increasing amount of substrates. Due to the assumed largely 
positive technological development and the decreasing production costs 
per unit reasoned in the assumed learning effects, the willingness of the 
actors to concentrate on foreign markets is decreasing. However, this 
effect is quite small, as there is still a rather restrictive legal framework 
in Germany, that still hinders the energetic use of HTP products as 
standard fuels. 

In the NA (hI) scenario, there are very few changes to the status quo, 

Fig. 2. FCM based on expert knowledge for political-legal concepts (own presentation).  

Table 5 
HTP scenarios for Germany by 2030.  

HTP Scenario Scenario factor combination and description 

Technological Action 
cons � 3 
Consistent  

Factor combination ¼ fx12 ; x13 ; x16; x20g

The available and useable amount of substrates increases 
ðx12). Disposal costs for HTP substrates (e.g., sewage 
sludge) are increasing ðx13). A cost-efficient and sustainable 
solution for process-water treatment is being applied ðx16) 
and in general, learning effects can be observed ðx20).  

Legal and 
Technological Action 
cons � 3:3 
Nearly consistent  

Factor combination ¼ fx1; x3; x17; x19; x20g

HTP energetic products are recognized as standard fuels, 
largely based on an end-of-waste regulation for HTP 
products ðx1; x3). HTP plants are increasingly being 
integrated into bio-waste and wastewater treatment 
facilities ðx17). The nutrient recovery is enhanced ðx19), 
and, in general, learning effects can be observed ðx20).  

No Action 
cons � 3:2 
Nearly consistent  

Factor combination ¼ fx12 ; x13g

The available and useable amount of substrates increases 
ðx12). Disposal costs for HTP substrates (e.g., sewage 
sludge) are increasing ðx13). Although the risk in non- 
occurrence of an efficient process water-treatment is rated 
as uncertain, we excluded this factor here, because, based 
on discussions with experts, we see this as a serious risk. 
Learning effects are excluded, as their non-occurrence is 
seen as a serious risk.   
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which is due to the fact that only two scenario factors occur. The 
competition in the procurement markets tends to decline, which is due 
to the increasing amount of substrate. The development of HTP ac-
cording to this scenario is stagnant. 

The greatest number of effects can be observed in the LTA scenario. 
This is mainly due to the high impact of the assumed legal adjustments. 
As can be seen in Fig. 2, “regular fuel recognition” has a high impact on 
the overall system and influences several factors directly. Approval of 
HTP products as energetic products provides legal certainty regarding 
energy use, which could have various effects. For example, the likeli-
hood of investment and technology funding could increase, and the 
market for material applications could become less attractive as the 
energy market is now fully accessible for HTP products. Furthermore, 
the approval of HTP products as a standard fuel makes product certifi-
cation largely obsolete, which is reflected in the negative value of this 
factor. The competitive situation in the procurement and sales markets is 
therefore exacerbated by the likely increase in the number of actors in 
the HTP branch. Foreign markets also lose their appeal as a result of the 
supporting legal framework. As HTP development gathers momentum, 
standardization processes could become more frequent. Planning and 
approval procedures could be also simplified. Technological develop-
ment could also increase, probably due to development dynamics, as 
evidenced by the high likelihood of introducing a cost-effective process- 
water treatment. 

In the LTA (lowI) scenario, the difference to the high-impact case is 
very small, because it is still assumed that the legal changes are intro-
duced. This clearly shows the high relevance of the legal factors. 

In the NA (lowI) scenario, the same system factors react as in the 
high-impact case, albeit with a much lower severity. The strength of the 
scenario factors therefore disproportionately affects the system factors 
in this scenario. 

Most of the differences between high and low-impact cases appear in 
the TA scenario. In the lower-impact case, for example, the probability 
of occurrence of process standards is reduced, which may be due to the 
less pronounced learning effects and technological advances in process- 
water treatment. As technological advances are less pronounced, it may 
be more difficult to achieve uniform process standards based on 
generally accepted best available techniques. This difficulty is also 

reflected in the fact that the factor “approval procedures” shows a 
negative value, and so it is less likely that approval procedures will be 
simplified in this scenario. Interestingly, the factor “foreign markets” has 
a positive value. The lower factor impact in this scenario is not enough to 
reduce the interest of the branch in foreign markets. 

4.2. Comparison of results for Germany with those of other countries 

To the authors’ knowledge, there are no comparable studies for other 
countries. Nevertheless, some literature is available on current devel-
opment potential and obstacles outside Germany. For example, [48] 
mentioned the potential for HTC in Europe as an innovative technology 
for the production of growing-media alternatives (e.g., peat). However, 
the study does not make a detailed assessment of other potentials and 
obstacles. [49] discussed future perspectives of hydrothermal conver-
sion for the production of fuels and energy carriers, but without a 
geographical focus. In their opinion, the technology has reached in-
dustrial maturity; however, research into suitable and stable catalysts 
and handling of the liquid phase from HTC and HTL, for example, is still 
necessary for economic feasibility. [50] analysed the suitability of HTC 
for food waste treatment in China and recommended to use it for this 
purpose combined with anaerobic digestion. 

The results of the studies mentioned are consistent in individual 
points with the present study. However, the mentioned studies do not 
consider an overall system of factors. For international readers, this 
study can provide first hints about potentials and obstacles, because 
many factors apply not only to Germany. The legal problem of fuel 
approval applies to the whole of Europe. In addition, the central techno- 
economic problems and potentials apply beyond Germany (e.g., treating 
the process water). 

4.3. Limitations of this work and suggestions for further research 

This study is mainly based on expert knowledge and thus on quali-
tative information. This is because there is little reliable historical data 
for the development of the relevant system factors. Deterministic 
models, which mathematically describe the relationship of the factors to 
one another, do not exist. Previous studies have shown that the FCM is a 

Fig. 3. FCM system factors variations for each HTP scenario assuming high factor (hI) and lower factor (lowI) impact. 
* For factors that are not listed (e.g., x1; x3; x19; x20), the change is “0” for all variants and scenarios, which is why they are not included in the figures. 
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method well-suited for such analyses as it does not require quantitative 
inputs and can provide helpful results based on qualitative descriptions 
and relationships. Although the results are largely based on qualitative 
expert assessments, through the broad participation process and the 
evaluation and analysis of information using fuzzy logic, they can be 
seen as reliable. 

The main contribution of this study is the systematic creation and 
comparison of different development paths for HTP until 2030. This 
contribution can help decision-makers in business, science, politics and 
civil society to identify bottlenecks for HTP in Germany. Future studies 
could expand the system by including new factors that could be iden-
tified by further expert knowledge. The relationships between the fac-
tors can be updated based on potential new information. In addition, 
other scenarios (i.e., factor combinations) could also be considered with 
regard to their effect on the system to identify further correlations. 
Future studies should at least partially elaborate deterministic models 
and validate them with available data, as far as possible and reasonable. 

5. Conclusion and recommendations 

The purpose of this study was to comprehensively map the system of 
factors in scenarios of HTP in Germany and analyse their reactions. This 
is unique because it attempts to describe the complete system of factors 
for the future development of HTP in Germany and their interactions. 
The study supports previous analysis of the authors with further 
findings. 

The legal factors have a large influence on the system. Based on this 
analysis, approval of HTP products as regular fuels is a prerequisite for 
creating legal certainty for the energetic use of the products. The model 
shows that this legal certainty in turn has various effects; for example, 
product certifications are less necessary, foreign markets lose relevance 
for domestic companies, technology funding and the establishment of 
substrate and process standards is more likely. A recommendation of this 
study is therefore that HTP products should be legally recognized as 
products, because the positive effects for the development of the tech-
nology are significant. Specifically, in EU or national waste law the 
legislator could specify the so named “End of waste” status of HTP 
products according to Article 6 Waste Framework Directive. 

Techno-economic factors (e.g., efficient process-water treatment, 
nutrient recycling, learning effects) also have an impact on the overall 
system, but less than the legal factors, which is shown by the different 
reactions in the TA and LTA scenarios. Nevertheless, these factors are 
also important for the development of HTP and they are to be imple-
mented in conjunction with the legal factors. Hence, also technology 
funding is recommended, including the development of a cost-efficient 
process-water treatment, integrated approaches such as nutrient recy-
cling, and the supporting of the construction of the facilities in industrial 
continuous operation in Germany. 

The methodological framework and analysis presented in this paper 
can support policy-makers regarding legislation and technology fund-
ing. The results are also useful for science because they allow for an 
improved prioritization of research. 

The value added by this study lies in the fact that development paths 
for HTP were derived, the system effects were analysed through FCM 
analysis and thus the understanding of the system was increased. The 
influencing factors were previously known and prioritized, but their 
effects on one another had not been analysed. It is critical to note that 
the analysis does not offer objective accuracy and is based not on 
quantitative data but on qualitative expert statements. Nevertheless, the 
study presents trends and their effects, which can support future 
decisions. 
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Appendix 

Short manual for rebuilding the fuzzy-logic cognitive map and 
calculate the system reactions:  

1. Visit the website www.mentalmodeler.com.  
2. Create a login as described on the website.  
3. After you have access to the tool, activate your Flash Player.  
4. In the “Model” tab, enter all the factors listed in Table 1 (as boxes). 

The program automatically assigns “fuzzy set” values. 
5. Then switch to the tab “Matrix” and enter the values for the con-

nections between the factors acc. Table 4.  
6. Then go to the tab “Scenario” and create the scenarios acc. Table 5. 

Select “sigmoid” as the calculation form.  
7. Now vary between high impact (þ1) and lower impact (þ0.5) cases.  
8. Mental Modeler will now give you the scenario values that should 

match with Fig. 3. 
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Abstract

The efficient use of biogenic residues can make a significant contribution to increase

resource efficiency. Due to its high energy efficiency, hydrothermal carbonization

(HTC) is being discussed as a potentially suitable technology for particularly wet and

sludgybiogenic residues. InGermany, however, it has not yet beenestablished at indus-

trial continuous operation. Among others, this is due to missing solutions for the eco-

nomic treatment of the high organic loads in the liquid by-product and insufficient

knowledge on long-term processing. Nevertheless, it is still expected that HTC could

be able to contribute in the future, especially for sewage sludge disposal.Whether and

under what conditions this could be the case is the subject of this study. The compet-

itiveness of modeled cases for industrial sewage sludge HTC, which address different

future paths, compared to thermal sludge treatment is investigated by using a multi-

criteria instrument. Results show that HTC can only compete with the reference tech-

nology if certain framework conditions are given. Particularly, an efficient phosphorus

recycling should be integrated and the production costs of the solid product should

be at least less than €325 per metric ton according to this case study. The treatment

performance of the liquid phase should be as high as possible whereby costs for fur-

ther treatment equipment should be minimized, so that mentioned productions costs

are not exceeded. This article met the requirements for a gold-gold JIE data openness

badge described at http://jie.click/badges.

KEYWORDS

hydrothermal carbonization, industrial ecology, multi-criteria decision-making, sludge disposal,
technology assessment

1 INTRODUCTION

With the latest sustainability strategy, theGermanFederalGovernmenthas set various goals for climate and resourceprotection (Bundesregierung,

2016). For example, annual greenhouse gas emissions are to be reduced by 55% in 2030 compared with 1990 levels and primary energy consump-

tion by 50% in 2050 compared with 2008 levels. To reach these goals, among others, the recycling of limited raw materials is aimed to reduce the

use of primary raw materials (Geissdoerfer, Savaget, Bocken, & Hultink, 2017). The sustainable production of biomass and their conversion into

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
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food, feed, bio-based products, and bioenergy is another central aim, which is often summarized as “bio-economy” (European Commission, 2012).

To increase resource efficiency, the gradual recycling andmultiple use of natural resources is being pursued (BMEL, 2014). All this requires also the

more efficient use of biogenic residues.

Considering the explained background, hydrothermal carbonization (HTC) is currently being discussed as a potentially suitable conversion tech-

nology for the treatment of biogenic residues with high water content (Heidari, Dutta, Acharya, & Mahmud, 2018; Reißmann, Thrän, & Bezama,

2018; Wang, Zhai, Zhu, Li, & Zeng, 2018). HTC is a thermochemical process that produces a solid carbon product. Liquid and gaseous by-products

are also produced (Medick, Teichmann, & Kemfert, 2017). In current practice (pilot plants), the reaction usually takes place continuously or in a

batch process at 200–210◦C, 20–25 bar, and within 3–6 hr of residence time (Anderer, 2012; Blümel et al., 2015; Kusche & Ender, 2018). One of

the convincing features ofHTC is its high energy efficiency. Sincewater is used as reactionmediumanyway, energy- and cost-intensive drying of the

substrate prior to the process is not necessary (Escala, Zumbühl, Koller, Junge, & Krebs, 2013). However, there are currently some obstacles that

hinder the industrial application of HTC in Germany. In particular, the disposal of the liquid by-product (so-called process water) requires a cost-

efficient treatment, which has not yet been conclusively developed (Fettig et al., 2018). Additionally, experiences in industrial continuous operation

are missing in Germany so far (Reißmann et al., 2018). Nonetheless, it is expected that HTC may offer a potential alternative in the treatment of

sewage sludge (Reißmann, Thrän, & Bezama, 2018a). Particularly, due to adjustments to the fertilizer law (BMUB, 2017) and the sewage sludge

ordinance (BMJV, 2017), alternative sludge utilization options with integrated phosphorus recovery will gain in importance in the future.

Whether hydrothermal processes (HTP) can contribute to the future resource efficient treatment of biogenic residues in Germany is currently

difficult to assess. Therefore, with previous studies, potentials and obstacles for the development of HTP in Germany were identified by means of

a literature review, expert interviews, and a SWOT analysis (Reißmann et al., 2018; Reißmann et al., 2018a). Based on these studies and further

representative expert assessments, whichwere collected through aDelphi survey, three future paths for the development of HTP in Germany until

2030 were constructed. The expert panel of the Delphi survey consisted on various stakeholder groups: science and research (65.5%), business

(27.3%), associations and NGOs (3.6%), politics and administration (1.8%), and multipliers (1.8%). The focus was on actors from the scientific field,

since HTP is mainly known in the research community and most of the experts are part of this community. A high proportion of around 70% of

the scientists surveyed have an environmental background. The survey asked questions about the weighting of the criteria and asked the experts

to use the analytical hierarchy process (AHP) scale according to Saaty (Saaty, 1990). In addition, questions were asked about various aspects of

the future development of HTP in Germany until 2030. Experts should assess events for their relevance, likelihood, and risk of non-entry for suc-

cessful technology development. The assessment was based on a Likert scale from 1 (not very relevant/likely . . . ) to 5 (very relevant/likely . . . ). The

proposed criteria and events were identified by previous formats (workshops, interviews, literature reviews) (Reißmann et al., 2018a; Reißmann,

Thrän, & Bezama, 2018b). Using the Fuzzy Delphi Method (FDM) and fuzzy cognitive mapping (FCM), development factors with particularly high

relevance and probability of occurrence by 2030 were determined and their connections presented (Reißmann et al., 2018b). As a result, the fol-

lowing scenarios were derived. The scenarios are not intended to predict a certain future but to show a “development funnel”, which can help to

reduce uncertainty of future decisions within this context.

∙ Technological Action Scenario (HTC-TA): This scenario represents the most likely development by 2030 according to expert assessments and eval-

uation using FDM and FCM. Accordingly, the available and technically usable substrate volume for HTP and the disposal costs for HTP-relevant

residues (e.g., sewage sludge) will increase by 2030. Depending on the individual case, high-performance treatment concepts are used for the

process water. Due to increasing experience in industrial continuous operation, learning effects in business management can be observed. This

means that if the cumulative output quantity (here: solid product of HTC) is doubled, the production costs are reduced by a factor (so-called

learning rate) of a maximum of 30% (Coenenberg, 1999).

∙ Legal and Technological Action Scenario (HTC-LTA): This scenario represents the most relevant development of supporting factors according to

expert assessments and evaluation using FDM and FCM. HTP plants are used decentral and integrated into suitable waste and waste water

treatment plants. Due to increasing experience in industrial continuous operation, learning effects in businessmanagement can be observed (for

explanation, seeHTC-TA scenario). Productsmade ofHTPwithwaste and residualmaterials as substrates are legally permitted as standard fuels.

Nutrient recycling (e.g., phosphorus) is basically integrated into HTP.

∙ NoAction Scenario (HTC-NA):This scenario represents theprobable development path, excluding factorswhosenon-occurrenceposes a particular

risk according to expert assessments and evaluations using FDM and FCM. Accordingly, the available and technically usable substrate volume

for HTP and the disposal costs for HTP-relevant residues (e.g., sewage sludge) will increase by 2030.

At this point, it should be pointed out that ecological and social factors should also be included for a comprehensive HTC scenario analysis: the

long list in Reißmann, Thrän, and Bezama (2020), which calls “life cycle performance” as an ecological factor and “customer acceptance” and “social

acceptance” as social factors, has clearly indicated in this regard, as well. However, due to insufficient data, these factors could not be considered in

the present analysis.

To clarify to what extent the individual scenarios differ along the HTC process chain and where the system boundary is set, Figure 1 gives an

overview of the relevant factors along the different scenarios and their connection to corresponding process steps.
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F IGURE 1 System boundary of scenario analysis and corresponding scenario factors along the HTC process chain
Note.HTP= hydrothermal processes; HTC= hydrothermal carbonization; TA= technological action; LTA= legal and technological action; NA= no
action.

Parallel to the aforementioned preliminary work, a technology assessment tool for HTP was developed (Reißmann, Thrän, & Bezama, 2018c),

which can be used to assess the future paths and compare them to a reference technology. The evaluation tool was specially developed for HTP,

which is reflected in the tailored criteria that were derived in a transparent procedure involving various stakeholders (cf. Reißmann et al., 2018a).

This analysis follows on from this previous work. On the one hand, the assessment instrument will be used for the first time to comparatively

analyzeHTP industrial scale scenarios and, on the other hand, potentially promising development corridors shall be derived for this exemplary case

study (which, however, cannot be generalized). The novel contribution of this study is that for the first time (modeled) industrial HTC applications

for potential development paths in Germany are quantitatively and comparatively evaluated. Although the literature shows that other studies also

considerHTCusingmulti-criteria assessment tools, no future developments are considered and no geographical focus is set onGermany. For exam-

ple, Qazi, Abushammala, and Azam (2018) evaluate various waste-to-energy processes, including HTC, using several criteria. Suwelack (2016) also

presents an MCA instrument, which is applicable for the evaluation of HTC and describes first steps for implementation. However, a comparative

analysis of different industrial HTC applications including possible future developments is not carried out.

The aim is to illustrate how the technology assessment instrument and the scenarios can be used to derive initial benchmarks for the future

techno-economic development of HTC at the plant level in Germany. In general, orientation values can also be derived for other areas (e.g., envi-

ronmental protection), but this study focuses on the techno-economic area. The evaluation is based on data for the semi-technical scale and is also

intended to validate the application of the assessment instrument. Furtherwork should substantiate the results, for example, on the basis of further

cases, scenarios and by considering further parameters and sensitivities.

2 METHODS

2.1 Base case and reference technology

As starting point, a HTC base case for sewage sludge disposal in Germany is created, which reflects a possible technological state in 2030 based on

current best available techniques (BAT), but does not yet include any learning effects. Due to the topicality and availability of data, we designed the

base case on investigations by Blöhse (2017) on the use of HTC as sludge disposal technology in Germany. These data are based on laboratory tests

supported by experiences in the semi-technical scale, which were converted to the large-scale (for detailed information on the data curation and

calculation cf. Blöhse, 2017). Since there is a lack of experience in industrial continuous operation and corresponding data sets so far, this analysis

represents the most suitable and available data source for the study subject. Accordingly, the technological framework conditions of the base case

are shown in Table 1. A visualization of the base case can be found in File S1.
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TABLE 1 Base case for sewage sludge HTC representing current BAT

Category Settings

Substrate input ∙ Municipal sewage sludge (mechanically dewatered)
∙ 65,000 tons of freshmass per year
∙ 14,300 tons of drymatter per year (∼dry residue content of 22% of the freshmatter) corresponds

approximately to a sewage treatment plant with onemillion population equivalents

Conversion technology ∙ Continuous operated HTC on an industrial scale
∙ Plant capacity corresponds to substrate input
∙ Processing conditions: 220◦C, 2 hr, 15 bar, pH value 7–8, no process optimization

Site and logistics ∙ HTC plant in a distance of 20 km from thewastewater treatment plant (simplified assumption for

central treatment and to exclude assumption “system integration” in the base case)
∙ HTC plant 40 km away from incineration plant

Mass reduction ∙ 75% of freshmatter input

Product yield ∙ 68% of drymatter input

COD load ∙ 278 kg/t drymatter input

Process water treatment ∙ Anaerobic COD elimination (fermentation), elimination of 70% of COD load

Other by-products for treatment

(not considered due to insufficient data)

∙ Sludgewater from first dewatering stage
∙ Exhaust air and condensate (vapors)
∙ HTC process gas

Nutrient recycling ∙ Excluded in base case

Product use ∙ Mono incineration in sewage sludge incineration plant as amaterial to be disposed of

A reference technology representing the current state of the art for sewage sludge treatment serves as a benchmark for the base case and the

correspondingly adapted scenario cases. The reference technology for reducing themass of the sewage sludge is thermal drying up to a drymatter

content of 90%, followed bymono-combustion and storage of the phosphorus containing ashes (cf. Blöhse, 2017).

2.2 Data and assessment criteria

The next step consisted in collecting the necessary information for the technology assessment of the base case. According to Reißmann et al.

(2018a), the criteria shown in Table 2 shall be consideredwhen evaluating HTC.

Some of the listed criteria are excluded from the further analysis (marked in bold in Table 2). The TRL is neglected as it is assumed that all cases

have reached industrial maturity (i.e., TRL = 9) and thus there are no differences. Due to insufficient and incomparable data, the GHG emissions

are also excluded. Comparable GHG balances are necessary for all case studies that are currently not available. GHG calculations already exist for

sewage sludge HTC (e.g., Meisel et al., 2019), but not for the case constellation considered here. In order to avoid misinterpretations, this criterion

is therefore not considered. The criteria “calorific value of end-product” and “carbon share of end-product” are excluded because they refer to

product qualities for potential sales markets or certain fields of application (energy market, carbon sequestration) which are not relevant in the

case of sewage sludge disposal.

The decisive factor is that the values of the remaining criteria (i.e., all criteria that have not been marked in bold in Table 2) are calculated or

collected on the basis of comparable assumptions. This is reflected in this study, as all the case studies are based on the same basic assumptions

(cf. Table 1 for base case assumptions and Table 3 for scenario assumptions) and the same database (i.e., Blöhse, 2017). It should be noted that the

criteria are not entirely independent and partly influence each other. However, the holistic presentation of relevant criteria mostly requires this,

which is why various studies point out that complete independence of the criteria in practical application is often hardly achievable. Nevertheless,

redundancies should beminimized in any case, which is also considered in this assessment (cf. Billig, 2016;Wilkens, 2012).

Regarding investment and operating costs per HTC plant, the following differentiation was assumed. An average of €12 million was considered

as the investment cost for HTC plants with simple plant technology, whereas €20 million were considered for HTC plants with complex plant

technology. Moreover, 2.5% of the investment was considered as an average of the operating resources and six employees with an average annual

salary of €50,000 for a period of 30 years were assumed. The phosphorus recovery is initially excluded within these values and the investment and
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TABLE 2 Criteria for technology assessment of HTC (Reißmann et al. 2018a)

Criteria Description Unit(s)

Technology readiness level (TRL) Classification of the level of development of a considered technology

according to ISO 16290.

Ordinal scale (1–9)

Production costs per unit Rawmaterial costs, manufacturing costs, investment and operating costs for

onemass unit of the product whereby no further refinement steps are

included (e.g., pelletizing). In the following calculation, we differentiate

between variable and fixed costs. Investment costs are part of the fixed

costs and are calculated in EUR/ton of solid product. Also, energy and

amortization are integrated into these calculations, for example, we

integrated cost savings for the substitution of methane for electrical and

thermal energy into the calculation. Regarding the amortization of

investment cost, we referred to Blöhse (2017) as follows: investment: 70%

operation technique (cap.= 15 a), 20% building equipment (cap.= 30 a),

10% E-MSR technique (cap.= 10 a), max. time= 30 a. The detailed

calculations are part of Reißmann et al. (2020a).

Euro per ton solid product

Conversion efficiency/mass balance Relation of product output to rawmaterial input (mass related). Percent of mass unit

Energy efficiency/energy balance Energetic effort for the production, operation, and reuse (disposal or

recycling) of the product (energy balance) in relation to the energetic

output of the product (efficiency).

Percent of energy unit

Distance of plant to suitable

substrates

Transport distance of suitable substrates from place of occurrence to

treatment plant.

Distance in kilometer

Greenhouse-gas (GHG) emissions Greenhouse-gas emissions occurring through the process steps relating to

the system boundaries. For this analysis, system boundaries include

transport and conversion steps. All other steps (e.g., product usage) are

excluded as there are no difference between the cases.

Global warming potential (CO2

equivalent)

Pollution of process water Share of organic substances in process water that occurs after hydrothermal

processing.

Chemical oxygen demand in

mgO2/l

Share of recycled phosphorus Share of phosphorus that is recycled in relation to the total substrate feed-in

phosphorus content.

Percent of mass unit

Calorific value of end-product Maximum usable heat amount through the combustion of the end-product

(water free).

Energy unit per mass unit

Carbon share of end-product Share of carbon in HTC coal in relation to total mass volume of the product. Percent of mass unit

Note:Criteria in bold are excluded from the further analysis.

resource requirements for the process water treatment are included on an assumption basis. Themore complex plant technology is considered for

the scenarios with more efficient process water treatment and integrated nutrient recycling (i.e., TA, LTA). For thermal drying, the investment sum

is estimated at €5,000,000 over 30 years. Operating costs, staff costs as well as costs for the treatment of vapors and condensate are not included

for thermal treatment in order to keep the estimation conservative. The detailed calculations for the individual criteria, broken down according

to the various case studies, are available as supporting data in Reißmann, Thrän, Bezama, and Blöhse (2020a) and Supporting Information Files S2

and S3.

2.3 Scenario factor effects on assessment criteria

The initial criteria values of the base case are then varied according to the scenario assumptions. Table 3 shows the assumptions used to represent

the factor and the resulting effects on the individual evaluation criteria. The description of the factors is part of Reißmann et al. (2020a).

2.4 Technology assessment of HTC cases and reference technology case

Subsequently, all cases are evaluated with the technology assessment tool and compared to the reference technology. The technology assessment

will be based on Reißmann et al. (2018c). For details on the methodology, reference is made to this study. According to this, the criteria are first

weighted by the analytical hierarchy process (AHP) (Saaty, 1990) and then evaluated comparatively using the technique for order preference by

similarity to ideal solution (TOPSIS) (Hwang & Yoon, 1981). Expert assessments were used to weight the criteria according to the AHP. For this
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TABLE 3 Scenario factors, assumptions for the presentation of the factor and factor effects on the evaluation criteria

Scenario

factors/descriptors Assumption for representing the factors Factor effects on assessment criteria

Regular fuel

recognition for

HTC solid product

The legal framework allows for regular energy sales

of the HTC solid product. However, as it is hardly

foreseeable from a current perspective whether

customers are actually willing to pay a price for

the solid product fromHTC, this scenario factor

is pragmatically included by eliminating the

disposal costs at the sewage sludge incineration

plant. The reason is that it is assumed that

because of the legally guaranteed fuel quality of

the solid product, operators of, for example,

(heating) power stations to waive the collection

of disposal costs for this substitute fuel. From the

perspective of the authors, this assumption is

most likely as a possible practice.

Production costs per unit: Since the product fromHTC is now

legally considered a fuel, the operators of the sewage

sludge incineration plant do not charge disposal costs

(here: €80 per ton).

Substrate availability

and disposal costs

An increase in the substrate supply is believed to

increase the disposal cost of sewage sludge, that

is, there will be higher disposal costs (e.g., due to

adjustment of contracts). According to a

previously conducted expert survey (cf.

Reißmann et al., 2020a), themean substrate

increase rate is approx. 13%.

Production costs per unit: Disposal costs are assumed to

increase proportionally to the 13% increase in substrate

amount.

Process water

treatment

It is assumed that after anaerobic COD elimination

(base case), a further aerobic post-treatment

takes place (process water cycle). In addition, a

lower pH of 2 (acid addition) is assumed (acidic

HTC). However, there is anothermass reduction

and reduction of the product yield from 11,000

tons to 9,900 tons (assuming the solid residues

have dried to drymatter content of 91%).

Production costs per unit: Increase of the production costs
according to the reduction inmass, whereby reduced

transport costs must be included. The cost of process

water treatment is increased by 30% of total costs based

on own calculations and comparative data of Terranova

Energy (Terranova Energy, 2016).

Mass balance: Reduction of the product yield or mass to be

disposed of by 10%.

Energy balance: The calorific value increases by 4MJ/kg for

acidic HTC. Based on own calculations, themethane

potential increases by 18.6 kWh/t freshmatter and

therefore flows into the energy balance as a credit note.

Exact values for the reduced energy requirement due to

the improved drainage properties could not be found.

Nevertheless, in order to take the factor into account, a

conservative approach of 5% energy saving in process

water treatment is applied.

Pollution of process water: The aerobic post-treatment

increases the COD elimination by 10% compared to the

base value. Another 10%COD elimination is gained by

lowering the pH-value.

System integration TheHTC plant is directly integrated into the waste

water treatment plant (WWTP). For the

reference technology, this is also assumed based

on the current state of the art.

Distance of plant to suitable substrates: Since theHTC plant is

directly integrated into theWWTP, the distance is

reduced to a fewmeters. Based on the paths on the site

of a comparableWWTP, we assume 100m.

Production costs per unit: Transport costs fromWWTP to

HTC aremarginal (100m) and are therefore neglected,

which reduces the production costs.

(Continues)
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TABLE 3 (Continued)

Scenario

factors/descriptors Assumption for representing the factors Factor effects on assessment criteria

Nutrient recycling HTC is carried out in a strongly acidic pH range

(acidic HTC), which transfers a large part of the

phosphorus (<85%) into the liquid phase, that

can then be precipitated from it. This requires the

addition of sulfuric acid of more than 12 kg per kg

of recycled phosphorus (cf. Blöhse, 2017).

Production costs per unit: Based on the available data, we
charge a lump-sum increase in costs due to the

additional acid demand of 30% for the acidic HTC. In

general, however, this additional requirement is already

included in the assumptions for process water treatment

and the corresponding highly acidic process conditions.

Since 30% increase is already taken into consideration

due to this, it is assumed that the additional acid

requirement for nutrient recycling is also included. In

addition, further optimization steps for phosphorus

precipitation, which can further reduce the acid demand,

are conceivable in the future (cf. Blöhse, 2017, p. 128).

Nevertheless, additional process steps, increased

environmental requirements, other disposal products,

and increased expenses in dealing with sulfur levels in

solid and liquid phase are needed. In order to take this

into account, a lump sum of 15% additional costs is

assumed for the total production costs.

Share of recycled phosphorus: With HTC leaching a

phosphorus recovery rate of up to 85%Pin is achieved

(Blöhse, 2017).

Learning effects According to the economic principle of the

experience curve (Coenenberg, 1999), the

inflation-adjusted (real) unit costs decrease

constantly as the cumulative production volume

increases. Typically, the costs decrease by a

maximum of 30%with a doubling of the

cumulative output. In this case, we conservatively

assume 15% over 10 years (2020–2029).

Therefore, considering that the year 2030 is still

ongoing in this analysis, learning effects for this

year are excluded. In the base case, learning

effects are disregarded.

Production costs per unit: The production costs per unit
decrease by 15% (conservative learning rate), with a

doubling of the cumulative output rate in the period

under consideration.

purpose, a Delphi survey was conducted among 51 HTP experts (cf. Reißmann et al., 2018b). The Delphi survey went through two rounds. In the

first round, there was a response rate of 53% (27 participants) and in the second round (verification of answers from the first round) of 44% (12

participants). The experts were asked to compare the criteria mentioned in Table 2 (and other evaluation criteria relevant for HTP, but are not

included in HTC evaluations) according to their relevance (so-called pair-wise comparisons). Using the Excel solver AHPCalc (Goepel, 2013), the

criteria weightings were determined on the basis of the survey results (cf. Reißmann et al., 2020a). In addition, the so-called consistency ratio (C.R.)

(Saaty, 1987) was calculated to ensure that the weights are consistent. That means, if A > B > C, then A > C must also apply. According to Saaty,

a C.R. < 0.1 represents consistency. The weights and their calculations are part of the data files in Reißmann et al. (2020a). The weighted criteria

were then transferred to TOPSIS which evaluates a set of decision alternatives. The so-called virtual best and worst case (i.e., best and worst

absolute terms of all criteria values) are used as benchmarks to represent the relative merits of the alternatives (Hwang & Yoon, 1981). Thus, the

best alternative in relation to other ones that are part of the analysis is calculated.

To further verify the results, a sensitivity analysis is also executed. The parameters disposal costs, learning rates, and cost-efficiency of process

water treatment are varied. The specific variations are part Reißmann et al. (2020a) and Supporting Information Files S1, S2, and S4.

3 RESULTS AND DISCUSSION

3.1 Comparative assessment for sewage sludge disposal based on single parameters

Based on the assumptions and calculations described, the results for the base case, the scenario cases and the reference technology are given in

Table 4.
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TABLE 4 Criteria values for base case, scenarios, and reference technology

Criteria Unit HTC-Base HTC-TA HTC-LTA HTC-NA Reference

Minimizing criteria

Production costs for solid

product

EUR/t
a)

410.52 401.36 323.39 420.92 329.77

Conversion efficiency/mass

balance
b)

%
c)

70 63 63 70 100

Distance of plant to suitable

substrates

km 20 20 0.1 20 0.1
d)

Pollution of process water

(treated)

mgO2/l 24340 9787 24340 24340 0
e)

Maximizing criteria

Energy efficiency/energy

balance

%
c)

49 80 78 49 18

Share of recycled phosphorus % Pin 0 0 85 0 0

Underlying data used to create this figure can be found in File S2 and the data repository Reißmann et al. (2020).
a)
Based on the resulting end product and therefore on different absolutemasses.

b)
In case of disposal, this factormust beminimized, since themass reduction is thenhigher.Hence, the amount ofwaste should be kept to aminimum. If instead

the product were sold as a fuel and a profit margin existed, this factor should bemaximized.
c)
Based on dewatered and dried sewage sludge for disposal (drymatter content of 91%).

d)
The sewage sludge drying usually happens on site, which is why no transport routes are assumed here in the reference case.

e)
In thermal sewage sludge disposal no HTC comparable liquid phase occurs.

Even without the inclusion of the individual criteria weights, clear differences between the alternatives are obvious. The LTA scenario is the

most cost-effective, which is reasoned in learning effects and missing disposal costs. Nevertheless, the difference to the reference technology is

relatively low at around €6 per ton.i The TA and LTA scenarios each include a 15% learning rate. However, in the TA scenario, the significantly higher

investment and operating costs (especially for process water treatment) compared to the base case and the still occurring disposal costs lead to

relative high production costs. The NA scenario shows that, despite lower investment costs in simpler plant technology, production costs per unit

remain high. This is because of missing learning effects. Due to the increase in disposal costs, this scenario is even worse in production costs than

the base case.

Substantial differences are also evident in themass and energy balances of the alternatives. Since the dried sewage sludge serves as the basis for

calculation of the substrate input, themass conversion of the thermal drying is trivially at 100%. In contrast, all HTC cases lead to amass reduction,

which is considered to be positive because of a reduced disposal volume (e.g., lower transport costs, less specific disposal costs). Energy efficiency

is significantly higher in the HTC cases than for thermal sewage sludge drying. This is not surprising since high energy efficiency is one of the key

advantages of HTC (cf. Lucian & Fiori, 2017;Wang, Chang, & Li, 2019). Regarding process water pollution, thermal drying has a decisive advantage.

Since it does not produce such a by-product, the load value can be set to “0″. The reference technology and the LTA scenario are advantageous

regarding the distance to suitable substrates, since in both cases the processing of the sewage sludge takes place directly on theWWTP and there-

fore no transport routes occur. Only the LTA scenario provides a content of recycled phosphorus, as it is the only one that assumes integrated

nutrient recycling.

3.2 Comparative multi-criteria assessment

Although there are some advantages and disadvantages to the cases and scenarios, a clear decision for the optimal alternative is relatively difficult

to make, as none of them are convincing in all respects. In addition, the individual criteria have not yet been prioritized. In order to decide which

alternative is most advantageous, the criteriamay be transferred to the technology assessment tool for HTP. According to the procedure described

in Section 2, the TOPSIS efficiency scores presented in Table 5 result accordingly.

Themulti-criteria technology assessment shows that the LTA scenario is the preferred alternative in this analysis, followedby the reference tech-

nology. In particular, the added value of the multi-criteria analysis, including criteria weighting, is that the relative advantages of the LTA scenario

compared to the other HTC scenarios, and the reference case, are very evident now indicated through the high TOPSIS efficiency index.When con-

sidering the individual criteria, this strong advantage is not directly recognizable, since, for example, the load of the liquid phase in the LTA scenario

is also relatively high.
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TABLE 5 TOPSIS efficiency scores for the base case, scenarios, and reference technology

Cases TOPSIS efficiency Distance best case Distanceworst case Rank

HTC-base case 0.14 0.34 0.05 4

HTC-TA scenario 0.27 0.31 0.11 3

HTC-LTA scenario 0.78 0.10 0.36 1

HTC-NA scenario 0.11 0.37 0.04 5

Reference technology 0.59 0.21 0.29 2

Underlying data used to create this figure can be found in File S3 and the data repository Reißmann et al. (2020).

The LTA scenario is probably themost advantageous because it performs best in the key criteria production costs and share of recycled phospho-

rus, which are both highly weighted. The reference technology is particularly convincing due to the non-occurring process water and the relatively

low production costs, which is why it performs quite well. The other three alternatives perform much worse and differ only very slightly to each

other. In general, based on the rating, these alternatives are not recommendable.

In the decision-making process, one should first prefer the LTA scenario,whereby this also depends on the framework conditions of the individual

decision. For example, if the load of the processwater in the LTA scenario is not tolerable for a decision-maker, then the reference technology should

be preferred. In that case, however, a higher weighting of the criterion “pollution of process water” would be advisable, or it must be determined a

threshold value as K.O. criterion.

The analysis of the modeled case studies on sewage sludge treatment with HTC provides plausible results. It seems reasonable to conclude that

only the LTA scenario is advantageous compared to the reference technology, since in particular the lower production costs and the integrated

phosphorus recycling represent important advantages. It should be noted, however, that the phosphorus recovery rate in sewage sludge treatment

for mass reduction is actually not the target. The target is to achieve a phosphorus content in the remaining solid lower than 20 g of phosphate

per kilogram of dry matter (Blöhse, 2017). In this regard, there is a need for further development in the criteria system depending on the objective

of the evaluation. In addition, this analysis describes only a modeled example and this is why the results are not transferable. Furthermore, also

phosphorus recovery from thermally dried and combusted sludge is possible afterward. This was not included in this case, as the system boundary

was set at the delivery of the solid product at the incineration plant. In addition, the aimwas to evaluate the system integrated nutrient recycling and

not a recycling afterward. However, if the system boundary is set differently and also includes recovery of phosphorus from the ashes, then there

would be also a phosphorus recovery rate for thermal drying. Additionally, assuming that legally binding phosphorus recycling from sewage sludge

causes a large proportion of the sludge into mono-combustion, it can also be expected that the costs of disposal of the thermal recovery will cease,

as the cement industry may be willing to continue to use this substitute fuel in co-combustion. All these factors would change the overall results.

However, this requires further assumptions about costs and technology. For example, one could base the recovery of phosphorus from sewage

sludge ashes using the so-calledMephrec process, since pilot studies have already been carried out (Reckter, 2019). Hence, further research on this

is recommended.

3.3 Sensitivity analysis

The parameters are only varied for the affected HTC cases. The criteria for the reference technology are kept constant in all analyzes, so that

comparability with the initial assessment is ensured. The following assignment to the parameters applies:

∙ Disposal cost reduction: Basis Case, TA andNA scenarios

∙ Learning effects: TA and LTA scenarios

∙ Cost and performance of process water treatment: TA scenario

3.3.1 Sensitivities for reduced disposal costs

Reducing the disposal costs only influences the production costs for the cases concerned (i.e., base case, TA and NA scenario). The resulting costs

are given in Reißmann et al. (2020a) (and also S1 and S4). It should bementioned, that while in the base case and in the NA scenario the production

costs decrease in proportion to the reduction of the disposal costs, this is not the casewith the TA scenario. Due to the assumption that the complex

processwater treatment technology always contributes 30% in addition to the total costs, in this case the costs decrease disproportionately, so that

if the disposal costs are completely missing, the production costs of the TA scenario are even higher than in the other two cases. For the reference
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F IGURE 2 TOPSIS efficiency index sensitivities on disposal cost change
Note.HTC= hydrothermal carbonization; basis= basic case without scenario assumptions; TA= technological action scenario; LTA= legal and
technological action scenario; NA= no action scenario; TOPSIS= technique for order preference by similarity to ideal solution.
Underlying data used to create this figure can be found in Supporting Information Files S1, S2, and S4 and the data repository Reißmann et al.
(2020a)

technology, the disposal costs were not varied but instead fully taken into consideration (€80 per ton) as it is assumed that only for HTC disposal

cost decrease will occur. In the LTA scenario, the disposal costs were already eliminated for the basis assessment. Transferred to the multi-criteria

analysis, the relationship shown in Figure 2 results.

The changes to the initial case (cf. Table 5) in amulti-criteria context are only very slightwhen reducing the disposal costs.However, if the disposal

costs are being dropped, the picture changes significantly. Although the LTA scenario is still most efficient, the gaps of the other scenarios to the

reference technology aremuch lower now. The criteria set of all alternatives is nowmuch clearer, as the distances in the criterion production costs

are no longer that strong.When interpreting results from TOPSIS, it is therefore important to consider the entirety of the criteria and their specific

weighting and to include all this information into the decision. Basically, it can be stated that by eliminating the disposal costs for the HTC solid

product an advantage compared to thermal drying for all alternatives, except the TA scenario, comes closer. Nevertheless, the base case and theNA

scenario are still less competitive, also because the non-occurring liquid phase represents a significant advantage of the reference technology.

3.3.2 Sensitivities for different learning rates

In the case of a variation of the learning rates only the production costs change. For the corresponding cases, the specific values resulting are given

in Reißmann et al. (2020a) and S1 as well as S4. For the TOPSIS efficiency indices, the variations according to Figure 3 emerges.

The learning rate has a significant impact on the overall result due to its high cost reduction potential. At lower learning rates in the TA and

LTA scenarios, a largely balanced picture emerges, apart from the fact that the high production costs in the TA scenario make it by far the least

favorable alternative. It can also be seen that starting at a learning rate of 15%, the LTA scenario makes a strong leap and then represents the most
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F IGURE 3 TOPSIS efficiency index sensitivities on different learning rates
Note:HTC= hydrothermal carbonization; basis= basic case without scenario assumptions; TA= technological action scenario; LTA= legal and
technological action scenario; NA= no action scenario; TOPSIS= technique for order preference by similarity to ideal solution.
Underlying data used to create this figure can be found in Supporting Information Files S1, S2, and S4 and the data repository Reißmann et al.
(2020a).

advantageous alternative. At a learning rate of 25%, TA and LTA scenarios aremost beneficial. The efficiency indices of the other twoHTC cases are

decreasing steadily, while the reference case is more robust against an increasing learning rate in the TA and LTA scenario, but also loses relatively

high in the efficiency index given the high learning rate of 25%. In general, it can be stated that with a learning rate of 25%, the HTC alternatives in

which action is taken are competitive to the reference technology regarding the overall assessment.

3.3.3 Sensitivities for cost-efficient process water treatment

Regarding the costs and performance of process water treatment, only the TA scenario is relevant, since only this scenario assumes an additional

process water treatment. For the sensitivity analysis, it is first assumed that the performance is increased with additional measures by 50%.

However, in the first variant this also leads to 50% additional costs for this cost factor (proportional cost efficiency). In the second variant, again,

a performance of 50% is assumed, but with a disproportionate cost increase of 60% and 80% (disproportionate cost increase). In the third variant,

the cost increase is assumed to be constant at 50%, but a higher treatment performance of 60%, 80%, and 98% is assumed (disproportionate

performance increase). The sensitivities for the production costs and process water treatment performance of the TA scenario are also part of S1

and S4. Figure 4 shows these variants in amulti-criteria context.

None of the considered constellations achieves a significant change in the overall result. Only for “proportional change,” it can be observed that

the NA scenario and base case improve significantly and become more advantageous than the TA scenario, which now has significantly higher

production costs. The other sensitivities show a largely stable picture, the changes are very small. Obviously, the cost increases for process water

treatment—even with the highest performance (98%)—always overcompensate all other criteria and lead to the result, that the TA scenario is the

worst alternative in all variants. Further considerations in TOPSIS show that even with constant costs in the TA scenario and maximum treatment

performance no advantage can be achieved. With a cost reduction of 17% to the initial costs and a consistent highest treatment performance of

98%, the TA scenario is advantageous compared to the reference technology, but is still less favorable than the LTA scenario. Onlywith a production

cost reduction of at least 39% the TA scenario will be advantageous compared to all cases in a multi-criteria context. It is therefore advisable to

make process water treatment more cost-effective or to extract andmarket any by-products (e.g., carbon) that result from the liquid phase.
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F IGURE 4 TOPSIS efficiency index sensitivities on different costs and treatment performances of process water treatment
Note:HTC= hydrothermal carbonization; basis= basic case without scenario assumptions; TA= technological action scenario; LTA= legal and
technological action scenario; NA= no action scenario; TOPSIS= technique for order preference by similarity to ideal solution.
Underlying data used to create this figure can be found in Supporting Information Files S1, S2, and S4 and the data repository Reißmann et al.
(2020a).

3.3.4 Effects on TOPSIS efficiency assuming best parameter combination

Combining the best of the above-mentioned parameters, the LTA scenario dominates (0.79), followed by the TA scenario (0.56) and the reference

technology (0.43). The following is assumed:

∙ Highest cost savings in TA scenario due to learning effects of 25% (assuming that disposal cost increase is overcompensated and thus no included

additionally).

∙ Highest cost savings in LTA scenario due to learning effects of 25%.

∙ Highest process water treatment performance in TA scenario of 98%with cost savings due to learning effects.

∙ No disposal costs in base case.

In particular, the learning effects have the strongest effects, since they greatly reduce production costs. However, the high treatment perfor-

mance in the TA scenario is not sufficient to make this scenario advantageous compared to the LTA scenario, which in turn illustrates the strong

dominance of production costs as a decision-making criterion within this case study.

3.4 Central findings based on MCA and the sensitivity analysis

The production costs have a very strong influence on the overall result, since they are included in the evaluation with almost 40%weight. However,

regarding the background of the economic viability of such niche technologies, this is definitely conclusive. Cost-effective competition with the
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reference technology is achieved only in the HTC-LTA scenario, but the performance of the process water treatment is insufficient for this case,

which is a major barrier. The higher production costs in the other HTC cases always make them unfavorable to the reference technology, even

when the process water treatment performance is very high (e.g., 98% in the TA scenario). Basically, only the LTA scenario tends to be competitive

with the reference technology, whereby the assumption that there are no disposal costs is largely unrealistic from a current perspective. The

TA scenario only becomes competitive when the production costs fall sharply (17–39% cost reduction) and at the same time the process water

treatment performance significantly increases. According to this analysis, the base case and the HTC-NA scenario are not competitive in any way.

Therefore, they cannot be considered as viable developments for HTC sewage sludge disposal in Germany.

According to this study, the most important parameters for an overall comparability are the production costs, the process water treatment per-

formance, and the degree in phosphorus recycling. In terms of energy and conversion efficiency, HTC is superior to the reference technology in

all cases, but this is not sufficient to achieve an overall benefit. The future technological development of sewage sludge HTC should therefore

concentrate on the most cost-efficient process water treatment, further potentials for reducing the production costs (e.g., reduction of energy

costs through heat waste recovery), and suitable concepts for system-integrated nutrient recycling. In particular, the necessary process water

treatment—to tap the exploitation potential and to ensure the legally prescribed treatment targets—represents a point already mentioned many

times, which is also considered in other studies as a decisive factor for the techno-economic implementation (e.g., Fettig et al., 2018). Regarding

production costs, Lucian and Fiori (2017), for example, cite a range of €157–200 per ton as competitive for the energetic use of the pelleted solid

product from HTC. Comparable costs imply this study, whereby the energetic use of the product was not considered. In this study, depending on

the specific conditions, production costs per ton HTC solid product of less than €325 are recommended. In the TA scenario, a benefit compared to

the reference case was achieved at less than €333 per ton and increased process water treatment performance of 98%. A benefit compared to all

alternatives for the TA scenario was achieved for less than €245 per ton and corresponding high process water treatment performance.

Whether HTC represents a suitable alternative to sewage sludge incineration is disputed even beyond the questions on costs and process water

treatment. The solid product tends to be unsuitable for the existing stock of sewage sludge incinerators in Germany, as they are designed for higher

water contents. According to the current state of knowledge, there is no reference plant for mono-incineration of the highly dewatered sewage

sludge from HTC (cf. Remy & Stübner, 2015). In order to increase the quality of the product, qualitative substrates are needed. Often, however,

sewage sludge does not represent such a qualitative substrate, which is why HTC research and development may need to address other residues

(Brosowski et al., 2016).

In principle, the results should be further validated, for example, by further sensitivity studies, the analysis of other case constellations or by the

inclusion of additional parameters (e.g., GHG emissions). The technology assessment tool can be a good aid for this, whereby the interpretation of

the results must always be considering the overall context of criteria. A verbal argumentative discussion of the results is therefore obligatory.

4 CONCLUSION AND IMPLICATIONS

By means of a multi-criteria analysis of sewage sludge HTC on the basis of different scenarios, their competitiveness compared to thermal sewage

sludge treatment was considered. The results of this analysis largely confirm the current problems in the field of using HTC for sludge disposal and

show that HTC is only advantageous to the thermal drying under very favorable conditions.

Themain results of this study can be summarized as follows:

1. Production costs, process water treatment performance, and the proportion of phosphorus recovered have the greatest impact on HTC com-

petitiveness compared to conventional processes.

2. According to this study, the competitive production costs are less than €325 per ton of HTC end product, whereby only the delivery of the

product up tomono-combustion and not beyondwas considered.

3. The performance of process water treatment should be maximized while keeping costs as minimal as possible. It is recommended to extract

by-products from the liquid phase (e.g., carbon) for further sales in order to counteract the high costs.

4. Further potential for reducing production costs lies in system integration (e.g., by using waste heat, considering possible alternatives for outlet

products) and the recycling of other nutrients such as nitrogen.However, further research is necessary here, especially basedonvalid datawhich

is currently not available.

5. A supportive legal framework that in particular allows the use of theHTC product as an energy source can contribute to further cost savings, for

example, by no longer incurring disposal costs at the incineration plant. It also ensures greater legal certainty for the actors.

6. Learning effects also ensure substantial cost reductions, whereby this simple business assumption is not based on exact measures but is due to

this type of business scenario analysis.

Since the results apply only to the modeled case examples presented here, a generalizability and transferability is not given. Hence, there is a

need for further case studies to underpin the results. An application to real plants is stimulated, although in Germany currently no corresponding
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HTC plants exist in industrial continuous operation and a corresponding analysis would have to make an assumption-based scaling. Nevertheless,

such analyzes are important in order to be able to carry out real tests on the basis of existing technological cases.
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