Deutsches Biomasseforschungszentrum

gemeinnützige GmbH

Kombinierte stofflich-energetische Nutzung von Rückständen aus der Forstwirtschaft

Bengt Verworner, Bereich BK

Biogasfachgespräch, 05.11.2025

Spezifische Forschungsziele

Bewertung der Ligninabbauleistung und des Mehrwerts der Vorbehandlung

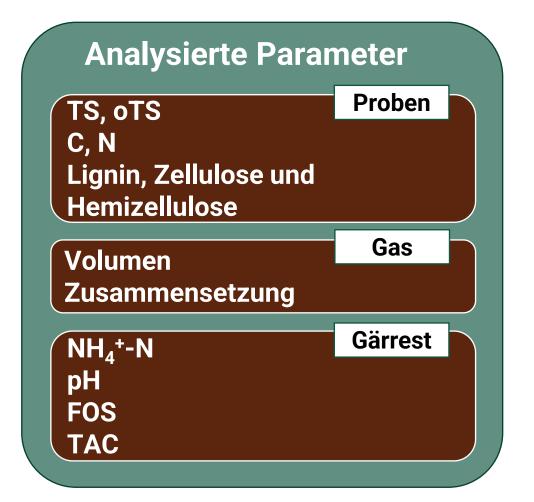
Ermittlung der idealen Raumbelastung von Co-Substraten der Region

-Methanpotenzialtests
-Kontinuierliche Gärtests
-Pilzvorbehandlung

Raumbelastung
und organische

Säuren

Pilz- und Energieerträge


Proben

Holzbiomasse: Kiefernspäne (Lagerbereich eines Sägewerks)

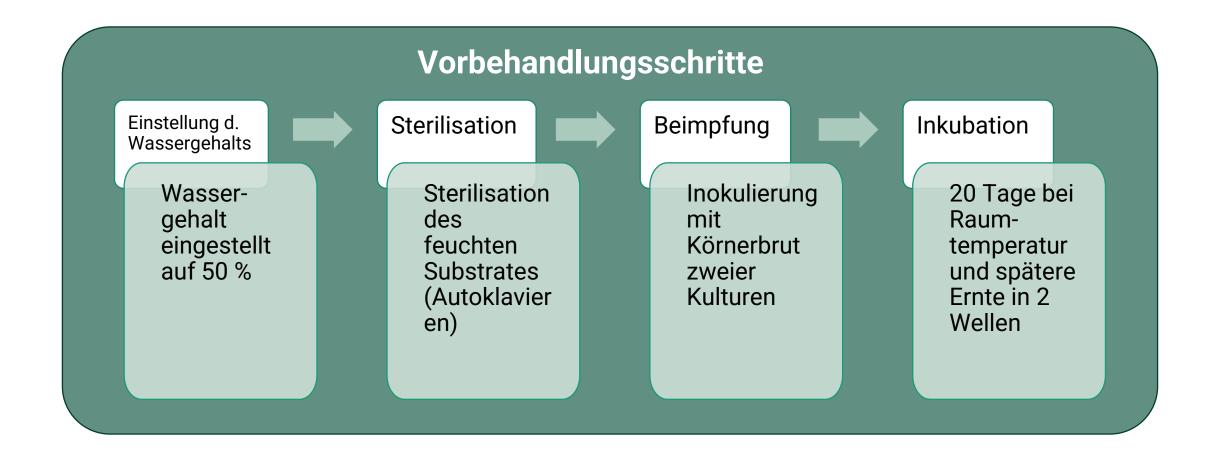
Hühnermist: Masthähnchenmist (Stall eines Bauernhofs)

Klärschlamm: Sekundärschlamm (sekundäre Behandlung einer Kläranlage)

Inokulum (DBFZ-Inokulum-Reaktor)

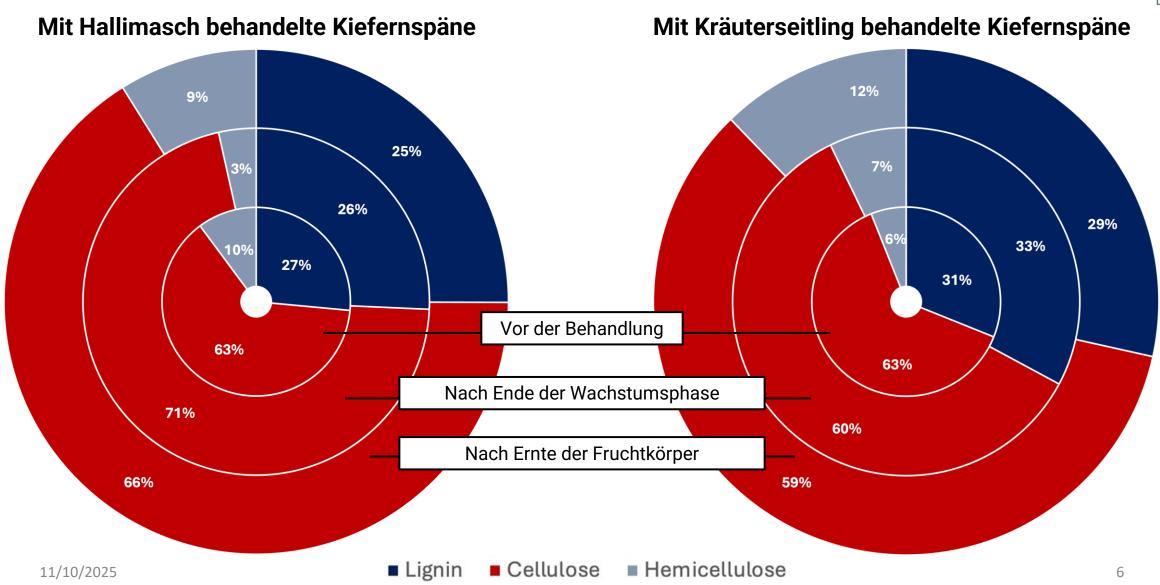
10/11/2025

Methoden – Probencharakterisierung


HM: Honey Mushrooms (Hallimasch); KOM: King Oyster Mushroom (Kräuterseitling)

Probenbeschreibung	TS [%FM]	oTS [%TS]	C [%TS]	N [%TS]
Inokulum	3.0	71.0	n.a.	n.a.
Masthühnermist (HTK)	57.2	86.8	38.8	3.9
Masthühnermist (HTK)	73.4	84.4	41.5	3.7
Klärschlamm	6.7	70.3	39.1	7.2
Klärschlamm	4.4	70.8	36.9	6.8
Unbehandelte Kiefernspäne	88.9	99.1	49.2	0.3
Unbehandelte Kiefernspäne	88.9	99.7	51.9	0.2
Unbehandelte Kiefernspäne	90.5	99.7	51.2	0.3
Unbehandelte Kiefernspäne	91.2	99.7	50.7	0.3
Unbehandelte Kiefernspäne	96.4	99.6	52.0	0.3
Kiefernspäne mit HM (nach der Fruchtungsphase) – große Säcke	57.2	99.7	49.6	0.5
Kiefernspäne mit HM (nach der Fruchtungsphase) – kleine Säcke	55.5	99.5	51.5	0.8
Kiefernspäne mit HM (nach der Durchwachsphase)	31.1	99.0	50.2	0.6
Kiefernspäne mit HM (nach der Fruchtungsphase)	32.4	97.9	49.8	0.7
Kiefernspäne mit KOM (nach der Durchwachsphase)	45.1	97.6	47.5	0.6
Kiefernspäne mit KOM (nach der Fruchtungsphase)	54.2	99.9	50.1	0.4

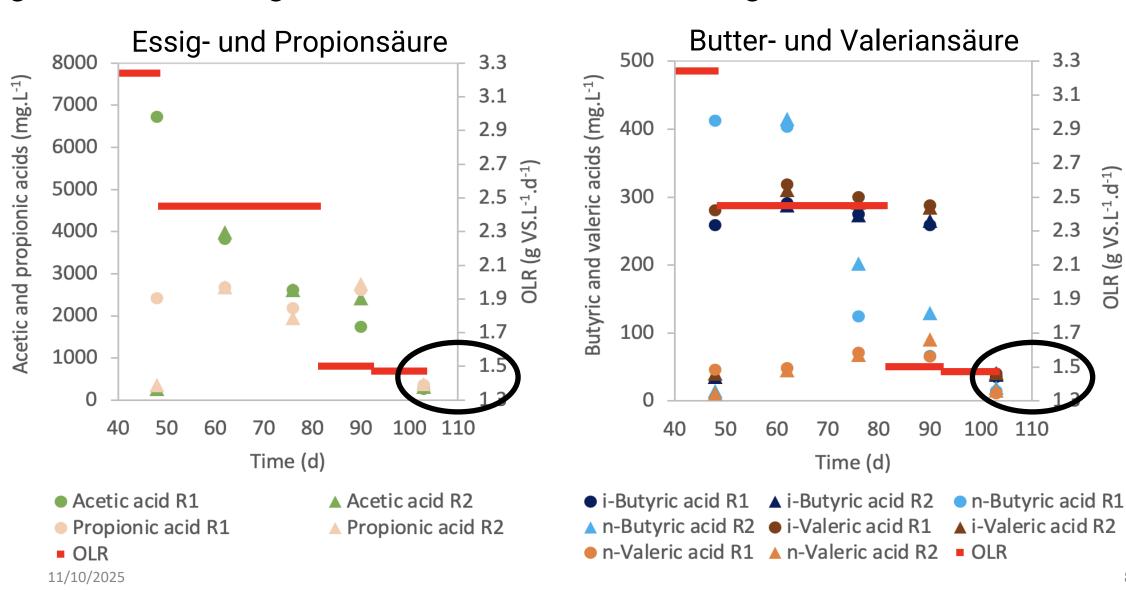
11/10/2025 4



Methoden - Vorbehandlung

Ergebnisse – Auswirkung der Vorbehandlung mit Pilzen auf den Lignocellulosegehalt von Kiefernspänen

Methoden – Anaerobe Vergärungsverfahren (Richtlinie VDI 4630)


Kontinuierlich (CSTR)

- Volumen: 12 L total, 10 L Arbeitsvolumen
- Fütterung und Probenahme 7 Tage/Woche
- Stetiges Rühren (150 rpm)

Experiment- schritte	Dauer [d]	HTK [g oTS/d]	Kiefern- spähne [g oTS/d]	Klär- schlamm [g oTS/d]	B _R [g oTS/(L.d)]	C:N
Schritt 1	18	5.8	16.9	1.3	2.4	25.9
Schritt 2	10	7.4	22.9	1.8	3.2	26.6
	21	9.3	21.3	1.9	3.2	24.7
Schritt 3	32	7.1	16.0	1.4	2.4	24.6
Schritt 4	11	3.1	11.1	0.8	1.5	29.5
	10	3.6	10.8	0.6	1.5	29.7

Ergebnisse – flüchtige Fettsäuren und Raumbelastung

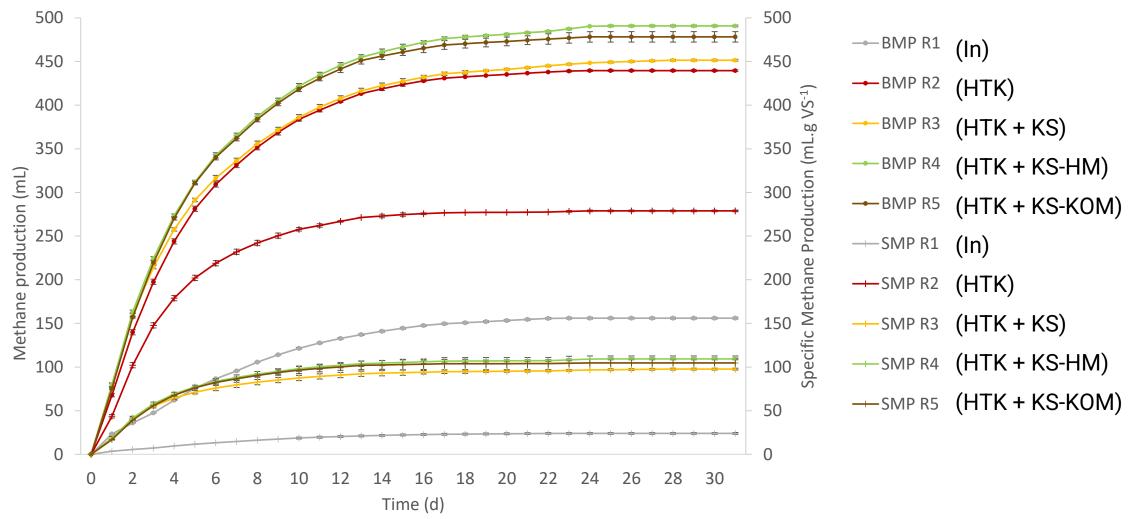
Methoden – Anaerobe Vergärungsverfahren (Richtlinie VDI 4630)

Kontinuierlich (Energieerträge)

- Volumen: 12 L total, 10 L Arbeitsvolumen
- Fütterung und Probenahme 7 Tage/Woche
- Stetiges Rühren (150 rpm)
- Ideale Raumbelastung im 1. Versuch (1.5 goTS.L⁻¹.d⁻¹)

	HTK [g oTS/d]	Kiefern- Spähne [g oTS/d]	Klär- schlamm [g oTS/d]	C:N	Belegung
R1, R2	3.6	0.6	10.8	33.1	Kiefernspähne unbehandelt
R3, R4	3.6	0.6	10.8		Kiefernspähne behandelt mit Hallimasch

Verfahren – Anaerobe Vergärungsverfahren (Richtlinie VDI 4630)


Batch

- AMPTS II
- 500 mL-Substratvolumen
- Mesophiler Betrieb (39 °C)

	In	HTK	KS		
Reaktor	[g oTS]	[g oTS]	[g oTS]	C:N	Belegung
R1	6.5	-	-	na	Inokulum
R2	6.5	1.0	-	11.2	HTK
	6.5				HTK + Kiefernspähne (KS)
R3		1.0	2.0	30.5	unbehandelt
R4	6.5	1.0	2.0	25.2	HTK + KS behandelt mit Hallimasch
	6.5				HTK + KS behandelt mit
R5		1.0	2.0	28.8	Kräuterseitling

Ergebnisse – Zeitlicher Verlauf der kumulativen biochemischen Methanproduktion (BMP) und der spezifischen Methanproduktion (SMP)

Es werden Durchschnittswerte aus dreifachen Durchläufen mit Standardabweichung (Fehlerbalken) angegeben.

Wesentliche Ergebnisse

Co-Vergärung N- und C-reicher Substrate führt zu besten Biogasausbeuten ggü. Solo-Vergärung

Limitierung durch Lignin kann durch Weißfäulepilze reduziert werden

Prozessstabilität bei $B_R = 1,5$ goTS/(Ld) am höchsten

Auswirkung auf Hochskalierung ausstehend

Anpassung der Kulturführung nötig

Wirtschaftliche Auswirkungen im Vergleich ersichtlich (LCA):

"From waste to circularity: The potential of different treatments of poultry manure and forestry residues in a hot-spot production region in Portugal"