Deutsches Biomasseforschungszentrum

gemeinnützige GmbH

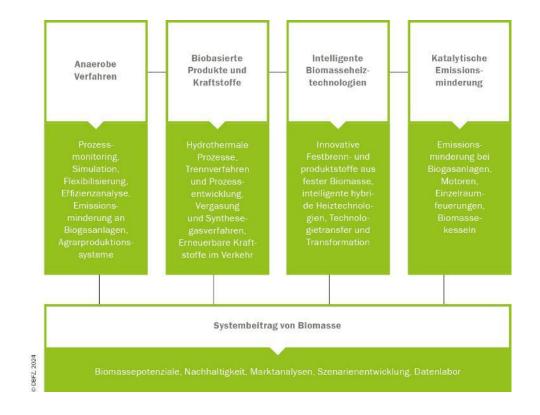
Hybride Heizsysteme erfolgreich umsetzen: Fach-Workshop Wärmepumpe und Pelletkessel

Lukas Richter

Unsere Vision: Smart Bioenergy

Sichere, saubere, integrierte und intelligente Bioenergienutzung für ein nachhaltiges Wirtschaftssystem

- Integrierte, konkurrenzfreie und bedarfsgerechte Energiebereitstellung
- Koppelproduktion biobasierter Energieträger
- Entwicklung hocheffizienter und sauberer Technologien
- Vollumfassendes Nachhaltigkeitsmonitoring
- Optimale Wertschöpfungsketten aus Biomasse



ZIEL: Eine klimaneutrale Bioökonomie auf Basis erneuerbarer Ressourcen

Die Forschungsschwerpunkte des DBFZ

3

Das Projekt hinter dem Workshop

Verbundvorhaben: BioHybrid — Entwicklung eines systemdienlichen biomasse-basierten Hybridsystems (03EI5474)

Eckdaten

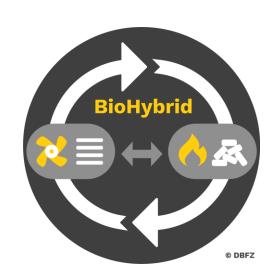
Projektstart: 04/2024

Projektlaufzeit: 36 Monate – 03/2027

Förderschiene: PtJ

Bewilligte Summe: ≈ 450.000 €

Konsortium



Unser Ziel: Hybridsysteme greifbarer machen

- Bereitstellung eines umfassenden Planungsleitfadens mit allen wichtigen Informationen zum Thema Hybridsysteme
- Kostenfreie Möglichkeit zur optimalen Auslegung eines eigenen Hybridsystems
- Größere Unabhängigkeit von herstellerspezifischen Komplettsystemen
- Kostenfreie Nutzung eines Regelungsalgorithmus zur optimierten Nutzung des Hybridsystems hinsichtlich Kosten, Emissionen und Netzbelastung

Warum sind wir heute hier?

Wie können Hybridsysteme in der Öffentlichkeit greifbarer gemacht werden?

Ablaufplan

Zeit	Thema		
13:00	Begrüßung und Zielsetzung		
13:20	Impulsvortrag: Status & Herausforderung der Wärmewende im Gebäudebereich		
13:40	Arbeitsgruppen zu Erfolgsfaktoren & Herausforderungen		
15:00	Kaffeepause		
15:30	Gallery Walk - Ergebnisse sichtbar machen		
15:45	Gemeinsame Auswertung		
16:40	Abschluss & Ausblick		
17:00	Ende der Veranstaltung		

Wer ist heute dabei?

"Ich arbeite bei …" "Meine Erwartung an den Workshop ist ..."

> "Mein Name ist ..."

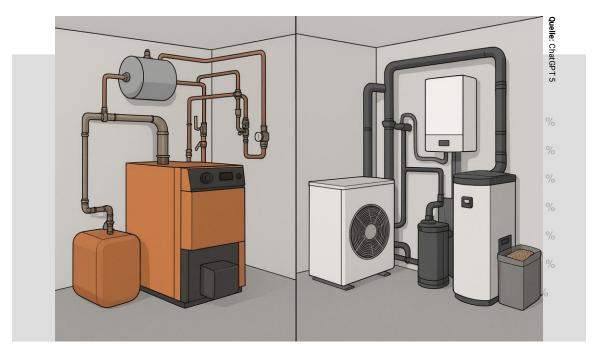
"Meine Funktion ist …" "Meine Erfahrung zu hybriden Heizsystemen ist ..."

Deutsches Biomasseforschungszentrum

gemeinnützige GmbH

Status & Herausforderung der Wärmewende im Gebäudebereich

Lukas Richter



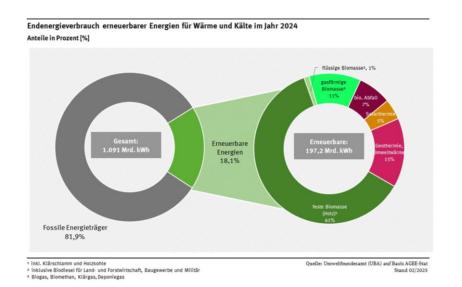
Fach-Workshop, 11. November 2025

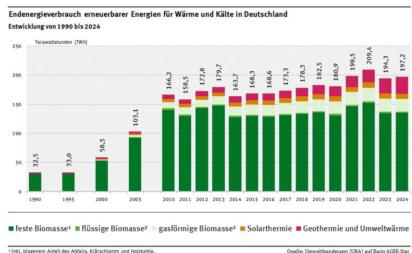
Einführung

Status Quo

→ Wie schaffen wir die Wärmewende?

Einführung


Ziel der Wärmewende



- Wärmeversorgung basierend auf erneuerbaren Energien und Abwärme
- kosteneffiziente, nachhaltige, resiliente sowie treibhausgasneutrale
 Wärmeversorgung bis spätestens 2045
- Drei Säulen zur Dekarbonisierung der Gebäudewärme
 - Energieeffizienz
 - objektnahe erneuerbare Wärme und
 - dekarbonisierte Wärmenetze

Stand der Wärmewende

inkl. biogenem Anteil des Abfalls, Klärschlamm und Holzkohle. Angaben für GHD erst ab 2003 verfügbar

Quelle: Umweltbundesamt (UBA) auf Basis AGEE-S Stand 02/20

→ Für das Ziel **Klimaneutralität bis 2045** muss der Wechsel zu erneuerbarer Wärme jetzt erfolgen!


² inkl. Biodiesel für Land- und Forstwirtschaft, Baugewerbe und Militär

³ Biogas, Biomethan, Klär-und Deponlegas


Stand der Wärmewende

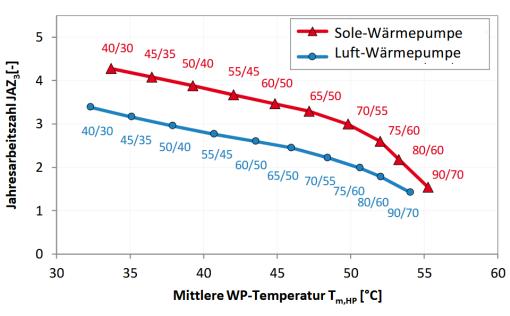
Altbau vs. Neubau

- → Wärmewende stagniert im Bestand!
- → Was sind die Lösungen?

Aktueller Stand

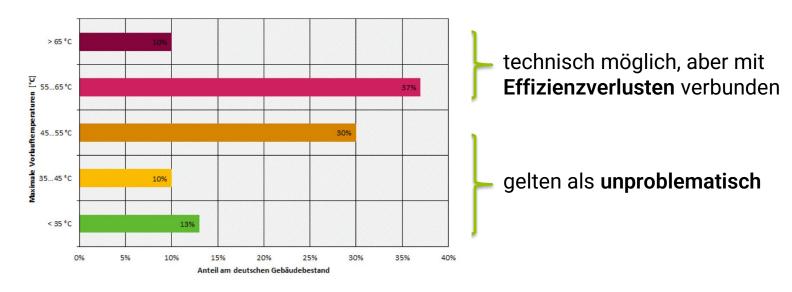
 Fraunhofer ISE: "aus technischer Sicht gibt es (…) kaum Gründe, Wärmepumpen in Bestandsgebäuden nicht einzusetzen"¹

Quelle: Bürger, Veit; Braungardt, Sibylle; Miara, Marek (2022): Durchbruch für die Wärmepumpe. Praxisoptionen für eine effiziente Wärmewende im Gebäudebestand Agora Energiewende; Fraunhofer ISE; Öko-Institut; RAP. online.


→ Aber was heißt "kaum"?

Technische Hemmnisse

Hauptkriterien für einen Wärmepumpen-Einbau:


- Systemtemperatur des Heizsystems
- bauliche Situation,
- Schallemissionen sowie
- (sozio-)ökonomische Situation.

Quelle: Bongs, Constanze; Wapler, Jeannettte; Dinkel, Arnulf; Miara, Marek; Auerswald, Sven; Lämmle, Manuel et al. (2022): LowEx-Konzepte für die Wärmeversorgung von Mehrfamilien-Bestandsgebäuden. LowEx-Bestand Analyse. Fraunhofer Institut für Solare Energiesysteme (Fraunhofer ISE); Albert-Ludwigs-Universität Freiburg; Karlsruher Institut für Technologie (KIT). Online verfügbar unter http://www.lowex-bestand.de/wp-content/uploads/2022/10/Abschlussbericht_LiB.pdf 16

Systemtemperaturen

Quelle: Umweltbundesamt (2023): Lösungsoptionen für Wärmepumpen in Bestandsgebäuden. Ad-hoc-Papier im Rahmen des Forschungsprojektes FKZ 3720 41 510 0. Dessau-Roßlau: Umweltbundesamt. Verfügbar unter: https://www.umweltbundesamt.de/sites/default/files/medien/11740/publikationen/2023-05-25_factsheet_loesungsoptionen_waermepumpen_gebaeudebestand.pdf (abgerufen am 04.11.2025),

■ < 35 °C ■ 35...45 °C ■ 45...55 °C ■ 55...65 °C ■ > 65 °C

Systemtemperaturen

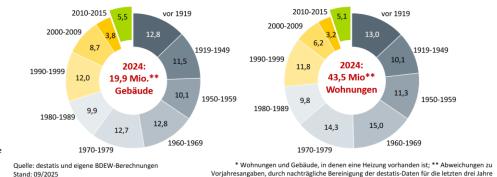
 Vorlauftemperaturen 70 °C → + 30 % Strombedarf gegenüber 55 °C (UBA 2023 / "LowEx-Bestand")

Gebäude*: Anteile in %

2016 und später

Systeme mit ≤ 55 °C "effizienzseitig unproblematisch".

Gebäudetyp / Baujahr	vor 1958	1958-1994	ab 1994
EFH	447	739	455
RH	215	285	132
MFH	433	591	143
GMH	62	191	36


Legende

Grün = Gut geeignet für WP (niedrige Vorlauf-Temperaturen und fast ausschließlich Niedertemperatur-Heizkörper unter 55 °C oder Flächenheizungen)

Blau = Technisch noch geeignet für WP (mittlere Vorlauf-Temperaturen um 55 °C und überwiegend Niedertemperatur-Heizkörper nachgerüstet, überwiegend energetische Sanierungen bereits durchgeführt)

Rot = häufigerer Anpassungsbedarf bei den Heizkörpern zu erwarten (höhere Vorlauf-Temperaturen über 55 °C und wenige Heizkörper-Nachrüstungen)

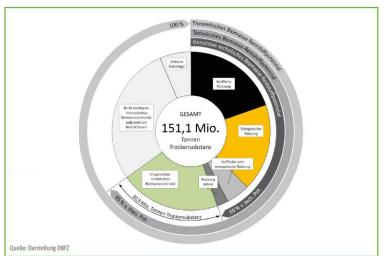
Quelle: UBA (2023)

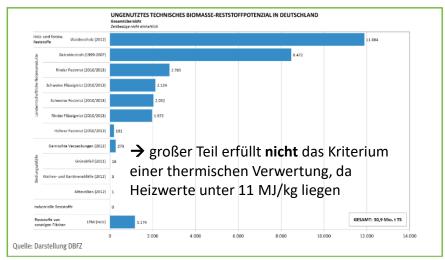
Wohnungen*: Anteile in %

2016 und später

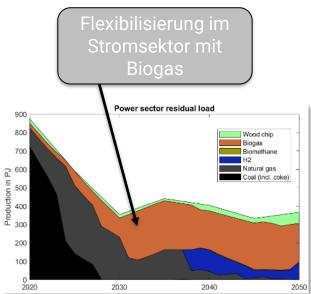
→ ≈ 45% der Gebäude & Wohnungen haben "häufigen Anpassungsbedarf"

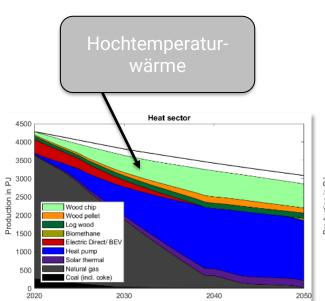
Resümee

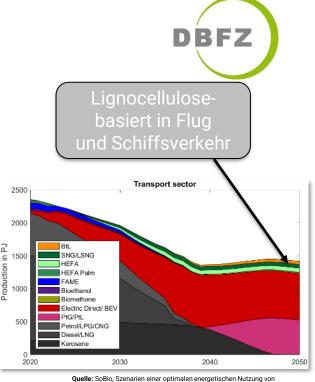

Wärmepumpen sind Schlüsseltechnologie – aber nicht Allheilmittel


- Grenzen vor allem im Bestand:
 - hohe Vorlauftemperaturen (> 55 °C)
 - ungedämmte Gebäude → ineffizienter Betrieb
 - Strompreise und Netzbelastung
 - Schlechter Ruf seit "Habecks Heizungshammer"
- Wirtschaftlichkeit hängt stark von Effizienz und Förderquote ab
 - → Was sind die Alternativen / Ergänzungen?

Aktueller Stand


- Biomasse (v.a. Scheitholz, Pellets, Hackschnitzel) dominiert mit 80 % EE-Wärmeanteil
 - In privaten Haushalten in Öfen, Kesseln
 - Aber auch in größeren Gebäuden & Wärmenetzen





→ Nachhaltiges Potential ist begrenzt

Prognose

Quelle: SoBio, Szenarien einer optimalen energetischen Nutzung von Biomasse im künftigen Energiesystem in 2030/2050

Berücksichtigte Holzpotentiale:

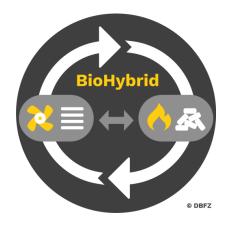
- Waldrestholz, Industrierestholz, Landschaftspflegeholz, Altholz
- Scheitholz, Paludikulturen
- 2,3 Mha Anbaufläche (Modell endogen langfristig zum Großteil mit Miscanthus belegt)

Zukunft

- Moderate Ausweitung kurzfristig evtl. möglich wissenschaftlich umstritten
- Ab 2035: deutliche Reduktion des energetischen Holzeinsatzes erforderlich
- Energetische Nutzung v. a. für biogene Abfälle mit CCS
- Biomasse nur dort einsetzen, wo technisch/ökonomisch zwingend
 - z. B. Hochtemperaturprozesse, Spitzenlasten

Resümee

- Vorteil:
 - Hohe Vorlauftemperaturen möglich → altbaufähig
 - Gut speicherfähig & flexibel
- Aber:
 - begrenzte nachhaltige Potenziale (Rohstoffverfügbarkeit)
 - Emissionen (Feinstaub)
 - Platzbedarf / Logistik
- → Biomasse bleibt wichtig, aber nicht flächendeckend skalierbar

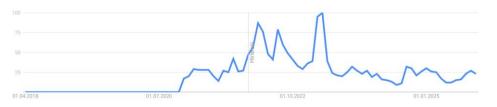

Und nun?

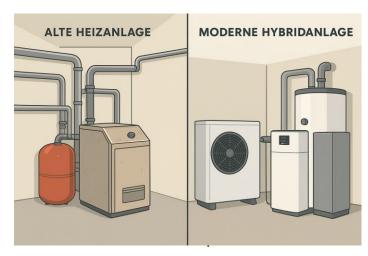
(Luft-Wasser-)Wärmepumpe

- + Effizient + Wartungsarm
- Effizienzverlust bei hohen
 Vorlauftemperaturen

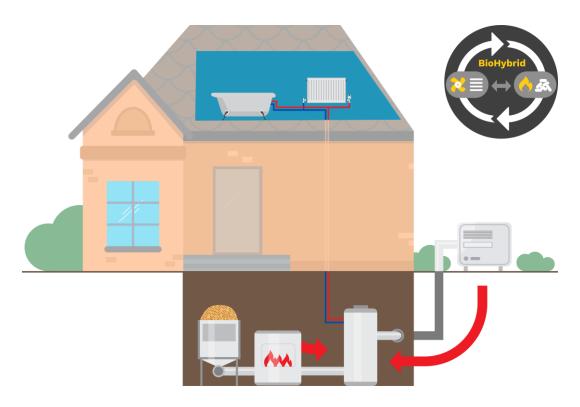
Biomasse

- + Flexibel + Wetterunabhängig
- Begrenztes nachhaltigesPotential


Hybridsystem


Biomasseunterstützte Hybridsysteme als Lösung!

- Kombination aus Wärmepumpe (Grundlast) + Biomasse (Spitzenlast)
- Vorteile:
 - flexible Betriebsweise → Entlastung Stromnetz
 - hohe Investitionskosten vs. geringere Betriebskosten
 - höhere Versorgungssicherheit
- Aber: Planungs- und Regelungswissen sowie Öffentlichkeitarbeit fehlt



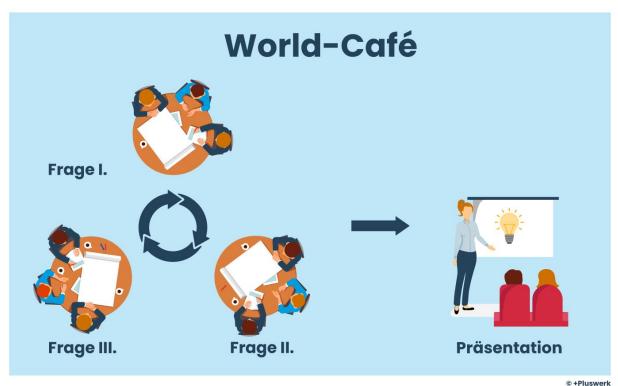
Google Suchanfragen nach "Hybridheizung"

Quelle: S. Matthus (2025): Entwicklung eines Python-Tools für die optimale Auslegung von modularen Pelletkessel-Wärmepumpen-Systemen, Masterarbeit

Biomasseunterstützte Hybridsysteme verbinden Effizienz, Versorgungssicherheit und Klimaschutz – und brauchen dafür Planungskompetenz, Innovation und passende Rahmenbedingungen.

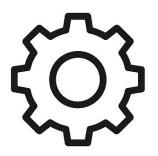
Deutsches Biomasseforschungszentrum gemeinnützige GmbH

DBFZ

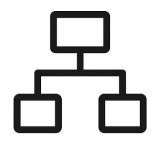

Arbeitsgruppen zu Erfolgsfaktoren & Herausforderungen

13:40 Uhr - 15:00 Uhr

Wie wir arbeiten: Das World-Café-Prinzip



- 3 Runden à 20 Minuten
- Nach jeder Runde wechseln die Teilnehmenden den Tisch
- An jedem Tisch bleibt ein "Host", der die Ergebnisse weiterführt


Unsere drei Themenfelder

Leitfrage 1 Leitfrage 2 Leitfrage n

Planung & Beratung

Leitfrage 1 Leitfrage 2 Leitfrage n

Wirtschaft & Rahmenbedingungen

Leitfrage 1 Leitfrage 2 Leitfrage n

So arbeiten wir in den Gruppen

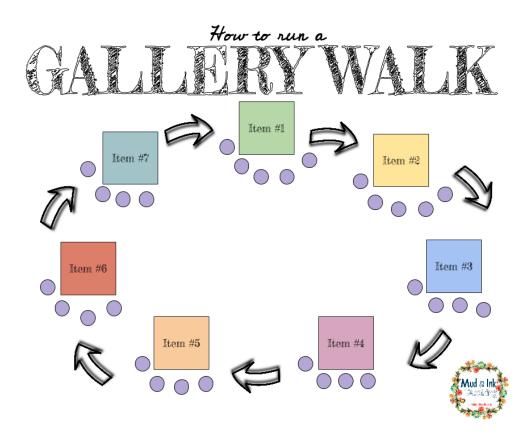
- 1. Wählen Sie eine Startstation (1, 2 oder 3)
- 2. Arbeiten Sie 20 Minuten zu den Leitfragen

- Notieren Sie Stichworte, Ideen, Skizzen auf dem Flipchart
 → Farbcodierung: Grün = Erfolgsfaktor, Rot = Herausforderung, Blau = Idee/Lösung
- 4. Nach 20 Minuten Wechsel der Host bleibt

ZEIT FÜR EINE KLEINE PAUSE Wir sehen uns 15:30 Uhr wieder!

Deutsches Biomasseforschungszentrum

gemeinnützige GmbH


Gallery Walk

15:30 Uhr - 15:45 Uhr

Wie wir arbeiten: Das Gallery-Walk-Prinzip

 Teilnehmenden gehen herum, lesen, markieren mit 3 Punkten die wichtigsten Ergebnisse

Deutsches Biomasseforschungszentrum

gemeinnützige GmbH

Gemeinsame Auswertung

15:45 Uhr - 16:40 Uhr

Welche Punkte sind entscheidend für die Praxis?

Warum sind das die relevanten Punkte?

Was muss getan werden, um diese **umzusetzen**?

Was muss getan werden, um dem **entgegenzuwirken**?

Was muss passieren, damit sich diese Punkte **verbessern**?

- Kurzfristig → Was kann jetzt von uns getan werden?
- Mittelfristig → Was benötigt Koordination?
- Langfristig → Was benötigt politische Weichenstellung?

Praxistransfer der Erkenntnisse

Was nehme ich heute mit?

Wo könnte ich die Erkenntnisse konkret anwenden?

Was bedeutet die Erkenntnisse für meine Organisation/Firma?

Was ist mein
Wunsch an
Forschung oder
Politik?

Call for Abstracts!

bis 25.11.2025

5. Fachgespräch "Staubmessverfahren an Kleinfeuerungsanlagen"

03.02.2026 | Deutsches Biomasseforschungszentrum in Leipzig

SCAN ME

Call for Abstracts!

bis 25.11.2025

17. Fachgespräch "Partikelabscheider in häuslichen Feuerungen"

04.02.2026 | Deutsches Biomasseforschungszentrum in Leipzig

SCAN ME

