

Yeast-based production of carboxylic acids from renewable resources and wastes

Andreas Aurich Steffi Hunger

4. DBFZ-Bioraffinerietag 12.09.2023

Yeast based bio-refinery - overproduction of Citrate cycle intermediates

Results of our yeast-based bio-processes with renewable resources

Carboxylic acid / Yeast strain	GMO / wt	Substrate	Concentr. [g l ⁻¹]	Selectivity [%]	Productivity [g l ⁻¹ h ⁻¹]	References	
Citric acid							
Yarrowia lipolytica H222	wt	glucose	120-140	90-92	0.7-1.2	Moeller et al. (2011, 2012, 2013) Förster, Aurich et al. (2007) Appl Microbiol Biotechnol 75	
Y. lipolytica H222-S4 (p67ICL1)	GMO	sucrose	140	95-96	0.8		
Yarrowia lipolytica H181	wt	sunflower oil	165-205	95	1.70	Aurich et al. (2003) Biotechnol Adv 21	
		raw glycerol	190	95	1.54		
Fumaric acid							
Candida blankii IFO1973	wt	glucose	49	85	0.14	WO 2013/120924	
Isocitric acid							
Yarrowia lipolytica EH59	wt	sunflower oil	93	53	0.56	Herretsch, Aurich et al. (2008) Angew Chem Int Ed 47	
Y. lipolytica H222-S4(p67ACO1)	GMO	sunflower oil	68	76	0.47	Aurich (2012) Subcell Biochem 64 Holz et al. (2009) Appl Microbiol Biotechnol 81	
Itaconic acid							
Pseudozyma tsukubaensis	Wt	glucose	66-75	87-90	0.19	DE 102008011854 DE 102008011854	
CBS422.96		glycerol	42	90	0.13		
α-Ketoglutaric acid							
Yarrowia lipolytica H355	wt	rapeseed oil	115	96	0.45	Aurich et al. (2012) Subcell Biochem 64	
Pyruvic acid							
Yarrowia lipolytica H355	wt	raw glycerol	64	80	0.90		
Succinic acid							
Yarrowia lipolytica H222-AZ9	GMO	raw glycerol	91	93.5	0.33	DE 102011056297 A1; Jost (2015) Appl Micro Biotech 9	

GMO=genetically modified organism, wt= wild-type strain

Why is citric acid (CA) a target for bio-economy?

H₂C-COOH HO-C-COOH H₂C-COOH

- Market size: about 2,000,000 t/a (2019), produced by fungi Aspergillus niger
- Main consumers: Western Europe, America
- Applications (Citric Acid Anhydrous & Citric Acid Monohydrate):
 - Food and Beverages
 - Detergents and Cleaners (decalcifier, acidification, metal complexing agent)
 - Pharmaceuticals and Personal Care (e.g. blood stabilizer)
- Use of sugars as carbon source → food vs. fuel controversy
- Centralized world scale production → local consumption

Our alternative: Non-sterile CA bio-process with *Yarrowia lipolytica* using wastes and wastewater (ww)

Wastewater from food processing

Results of non-sterile CAprocess at conventional bio-reactors

Wastewater + WFO	Time (h)	Citrate (g/L)	Producti- vity (g/L*h)
Oil & Fat separator discharge	95-165	128-145	0.8 - 1.2
Kitchen cleaning discharge	190	182	0.95
Urban WW	190	134	0.7
Tap water	166-214	166-192	0.9-1.15

Patent granted:

Aurich et al. (2023) Method for producing carboxylic acids under unsterile conditions; **US11597952**, **EP3642347**

Challenge: From high-tech to low-tech -Designing a downgraded bioreactor for decentralized operation

Conventional sterile Stirred tank bioreactors

Downgraded non-sterile bioreactor

- \succ Efficient O₂, heat transfer system
- Designed for sterile operation
- > Control and analysis of many parameters \rightarrow T, pH, pO₂, OUR, CPR
- ≻ High invest costs: >400,000 € for 1 m³

- Based on standard equipment for operation of
 - wastewater treatment (e.g. IBC container)
- Modular for decentralized operation
- Simple robust control system
- Low invest costs: ~35,000 € for 1m³

Final design of 1m³ IBC container based bioreactor for decentralized yeast based Citric acid production

Exemplary decentralized concept & solution: Canteen & Catering UFZ

University, non-university and industrial R&D partners for

- Further development / optimization of downgraded bioreactor systems
- Development / optimization of downstream processing for carboxylic acids
- > Opening up new fields of application for yeasts / carboxylic acids

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

thyssenkrupp

Deutsche Bundesstiftung Umwelt

> Bundesministerium für Bildung und Forschung

European Commission

Horizon 2020 European Union funding for Research & Innovation

KMU-innovativ Vorfahrt für Spitzenforschung im Mittelstand Thanks to the team: Steffi Hunger, Jonas Köhne, Julia Pantke, Anne Knoll, *Benjamin Jost, Ina Ludwig, Robert Specht*

Contact:

Mail: andreas.aurich@ufz.de Tel.: +49 235 1758

Thank you for your attention !