Deutsches Biomasseforschungszentrum gemeinnützige GmbH

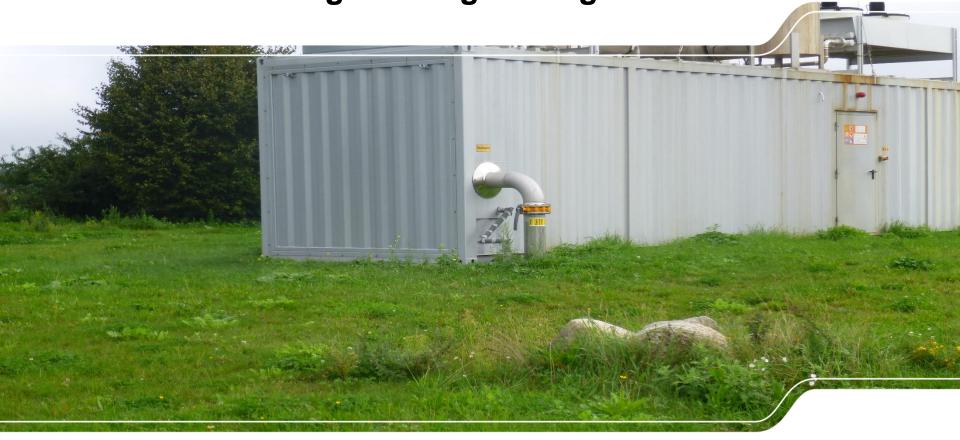
DBFZ

Biogas-Fachgespräch

Post EEG & EEG 2023 - Neue Impulse für die Bioenergie

Biogas-Fachgespräch | 23. November 2023 in Leipzig

Agenda


Zeit	Thema	Vortragender
Ab 11:45 Uhr	Registrierung und Einlass	DBFZ
12:00 Uhr	Optional: Führung über die Forschungsbiogasanlage des DBFZ	DBFZ
13:00 Uhr	Begrüßung und inhaltliche Einführung	Tino Barchmann Deutsches Biomasseforschungszentrum
13:05 Uhr	Aktuelle und künftige Anforderungen an die Emissionsminderung bei Biogasanlagen	Torsten Moczigemba Sächsisches Landesamt für Umwelt, Landschaft und Geologie
13:15 Uhr	Vorstellung und aktuelle Ergebnisse aus dem Verbundvorhaben, EmMinA: Emissionsminderung bei der Biogasaufbereitung, -verdichtung und - einspeisung	Lukas Knoll Deutsches Biomasseforschungszentrum
14:10 Uhr	Optische Gasdetektion zur Überprüfung von Biogasanlagen	Torsten Reinelt Landesamt für Umweltschutz Sachsen-Anhalt

Agenda

Zeit	Thema	Vortragender
14:40 Uhr	Kaffeepause	
15:10 Uhr	BlmSchV – Neue Anforderungen und Betreiberpflichten von BHKW-Modulen	Dr. Stefan Mattersteig Mattersteig & Co. Ingenieursgesellschaft für Verfahrenstechnik und Umweltschutz mbH
15:40 Uhr	Ermittlung des H ₂ S-Gehaltes in Behältern von Biogasanlagen – Anwendung der Ergebnisse in der Praxis	Torsten Moczigemba Sächsisches Landesamt für Umwelt, Landschaft und Geologie
16:05 Uhr	Diskussion mit den Teilnehmenden	
16:20 Uhr	Zusammenfassung und Verabschiedung	Tino Barchmann Deutsches Biomasseforschungszentrum
16:30 Uhr	Ende der Veranstaltung	

Aktuelle und künftige Anforderungen an die Emissionsminderung bei Biogasanlagen

Übersicht

- **Einleitung**
- Struktur TA Luft / 44. BlmSchV
- Ausgewählte Kapitel mit Bezug zu Biogas
- Fazit/Ausblick

Einleitung

Entscheidende Regelwerke

- Technische Anleitung zur Reinhaltung der Luft (TA Luft) – in Kraft getreten am 1.12.2021
- Vierundvierzigste Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über mittelgroße Feuerungs-, Gasturbinen- und Verbrennungsmotoranlagen – 44. BImSchV) – in Kraft getreten am 20.12.2019

(TA Lärm – nicht Gegenstand des Vortrages)

Steckbrief Technische Anleitung zur Reinhaltung der Luft (TA Luft)

- Die zentrale Vorschrift in Deutschland für den anlagenbezogenen Immissionsschutz – konkretisiert den Stand der Technik bzgl. E-Minderung
- Normkonkretisierende Verwaltungsvorschrift gemäß § 48 BlmSchG
- Reichlich 400 Seiten
- Zwingend für genehmigungsbedürftige Anlagen, Erkenntnisquelle für nicht genehmigungsbedürftige Anlagen
- Gilt für mehr als 50.000 Anlagen in Deutschland
- Flexibel, z.B. durch altanlagenspezifische Regelungen, Dynamisierungsklauseln, Minimierungsgebote und Zielwerte

Steckbrief 44. BlmSchV

- Mit der Verordnung wurden bestehende Regelungen für nicht genehmigungsbedürftige kleine und mittelgroße Feuerungsanlagen (1. BlmSchV) sowie für genehmigungsbedürftige Feuerungsanlagen (4. BImSchV, TA-Luft) neu gefasst
- Unter anderem ergeben sich folgende Änderungen:
 - Neue und teilweise verschärfte Emissionsgrenzwerte
 - Kürzere Messintervalle
 - Neue Pflichten zu Nachweisen, Dokumentationen und Meldungen
 - Registrierung der Feuerungsanlage
- Anlagen für flüssige und gasförmige Brennstoffe im Leistungsbereich 1 20 MW, die bisher in der 1. BlmSchV geregelt waren, fallen nun in den Zuständigkeitsbereich der 44. BlmSchV.
 - Regelungen aus der 1. BlmSchV ...

5.4 TA Luft

Besondere Regelungen für bestimmte Anlagenarten

Betroffene Anlagen mit Bezug zu Biogas

- 5.4.1.15 Anlagen zur Erzeugung von Biogas, soweit nicht von den Nrn. 8.6.1 oder 8.6.2 des Anhangs der 4. BlmSchV erfasst
- 5.4.1.16 Anlagen zur Aufbereitung von Biogas
- 5.4.8.1.3a Hochtemperaturfackel oder Muffel
- 5.4.8.1.3b Teilverdeckt oder verdeckt brennende Fackel
- 5.4.8.6.2 Anlagen zur biologischen Behandlung von nicht gefährlichen Abfällen (Vergärung von Bioabfällen und Anlagen mit anaerober und aerober Betriebseinheit sowie Anlagen, die Bioabfälle in Kofermentation mitverarbeiten)
- 5.4.8.6.3 Anlagen zur aeroben Vergärung von Gülle (Wie 5.4.1.15)
- 5.4.9.36 Anlagen zur Lagerung von Gülle oder Gärresten

Nr. 5.4.1.15 Anlagen zur Vergärung von Bioabfällen

(soweit nicht von den Nrn. 8.6.1 oder 8.6.2 erfasst)

- gilt 1:1 für Anlagen zur anaeroben Vergärung von Gülle nach Nr. 8.6.3
- Mindestabstand
 - bei Errichtung von Anlagen Ermittlung der Kenngröße der zu erwartenden Geruchszusatzbelastung gemäß Anhang 7.
 Kenngröße nicht überschreiten.
 - zusätzlich für Neuanlagen: 100m zur nächsten Wohnbebauung
- Bauliche und betriebliche Anforderungen (Auszug):

Nr. 5.4.1.15 Anlagen zur Erzeugung von Biogas

Silo, Anlieferung, Transport

- Silagen sind zur Minderung von Geruchsemissionen mit geeigneten Folien oder Planen abzudecken. Anschnittfläche ist auf ein Mindestmaß reduzieren. Silagesickersäfte sind austrittsflächennah zu erfassen, über geruchsdichte Schächte oder Behälter zu sammeln und unverzüglich einer Vorlage oder einem Fermenter zuzuführen.
- Vermeidung staubförmiger Emissionen und Geruchsemissionen bei Anlieferung und innerbetrieblichem Transport - Befestigen und Sauberhalten innerbetrieblicher Fahrwege und Betriebsfläche.
- Emissionen aus Behältern zur Sammlung von Silagesickersaft sind durch Abdeckung nach Stand der Technik zu minimieren.

Nr. 5.4.1.15 Anlagen zur Erzeugung von Biogas

Gaserzeugung, Gärrestelagerung

- Gas-Speicherung nicht möglich ➤ über fest installierte Fackel verbrennen.
- Zusätzliche Gasverbrauchseinrichtungen müssen automatisch in Betrieb gehen, bevor Emissionen über Überdrucksicherungen entweichen.
 Ansprechen von Unter-/Überdrucksicherungen muss Alarm auslösen.
- Bei Gasspeichern müssen Füllstand und Druck kontinuierlich überwacht sowie vor Ort und zentral angezeigt werden.
- Gärbehälter/Gasspeicher doppelwandig mit fest installiertem "Methansensor" zur Überwachung Zwischenraum (Altanlagen nach 8 Jahren, sofern technisch möglich).
- Dichtigkeitsprüfung aller gasbeaufschlagter Teile durch geeignete Person in Sinne der TRAS (<u>Technische Regel Anlagensicherheit</u>) 120, vor Inbetriebnahme und danach alle drei Jahre zu prüfen. Alternative Dichtigkeitsprüfung mittels spezieller Kameratechnik möglich.

Nr. 5.4.1.15 Anlagen zur Erzeugung von Biogas Substrataufbereitung

- Abgase aus Anlagenteilen zur Separierung oder Pelletierung von Gärresten sind möglichst zu erfassen und einem Biofilter oder einer gleichwertigen Abgasreinigungseinrichtung zuzuführen.
- Abgase aus der Trocknung von Gärresten sind zur Ammoniakabscheidung einem sauren Wäscher oder einer gleichwertigen Abgasreinigungseinrichtung (E-Minderungsgrad > 90%) zuzuführen.
- E-Grenzwerte für Abgas aus Gärresttrocknungsanlagen:

Ammoniak: 5 mg/m³

Gesamtstaub: 10 mg/m³

Nr. 5.4.1.16 Anlagen zur Aufbereitung von Biogas

- Beim Einsatz thermischer Nachverbrennungseinrichtungen gelten die allgemeinen Anforderungen der Nummer 5.2.4 letzter Absatz - auch beim Einsatz von Schwachgas aus Biogasaufbereitungsanlagen)
- Abdichtungssysteme sind auf den Verdichtungsenddruck auszulegen. Bei Verdichtungen anfallendes Leckagegas ist in die Anlage zurück zu fördern oder, wenn dies nicht möglich ist, einer für die Verdichterenddrücke geeigneten, zusätzlichen Gasverbrauchseinrichtung zuzuführen. Wenn es sich dabei um eine Fackel handelt, gelten die Anforderungen der Nummer 5.4.8.1.3b.
- Bei Abweichungen vom bestimmungsgemäßen Betrieb ist das in den Anlagenteilen zur Aufbereitung anfallende, (extrem) entzündbare Gas einer für die Verdichterenddrücke geeigneten Fackel nach Nummer 5.4.8.1.3b zuzuführen, soweit eine Nutzung nicht möglich ist.

Nr. 5.4.8.1.3 Fackeln

- Falls Gasproduktion nicht dauerhaft energetische Nutzungsmengen übersteigt, soll aufgrund schlechter Gasqualität, zu geringer Gasmengen sowie bei unvermeidbarem Stillstand der Energienutzungsanlage energetisch nicht genutztes Biogas mittels teilverdeckt oder verdeckt brennender Fackeln verbrannt werden.
- Fackel muss über automatische Zünd- und Überwachungseinrichtung verfügen und im Anforderungsfall automatisch in Betrieb gehen.
- Abgastemperatur ab Flammenspitze bei (teil)verdeckt brennenden Fackeln ≥ 850° C
- falls Gasproduktion dauerhaft energetische Nutzungsmenge übersteigt
 - ➡ Einsatz einer "Hochtemperaturfackel" oder "Muffel". Abgastemperatur ab Flammenspitze bei Anlagen mit einer FWL > 1 MW mindestens 1.000° C und Verweilzeit mindestens 0,3s.

Nr. 5.4.8.6.2 Anlagen, die Bioabfälle mitverarbeiten

Ergänzende Anforderungen für Kofermentationsanlagen

- Unter Umständen höherer Mindestabstand
- Geschlossener Annahme- und Aufbereitungsbereich und Anforderungen an Hallentore (Schnelllauftore, ggf. weitere Maßnahmen).
- Abgase aus Bereichen Annahme, Aufbereitung und Weiterbehandlung von Gärresten sind zu erfassen und einem Biofilter mit vorgeschaltetem sauren Wäscher (Ammoniakabscheidung) oder einer gleichwertigen Abgaseinrichtung zuzuführen.
- E-Grenzwerte:

Ammoniak: 10 mg/m³

Geruchsstoffe: 500 GE/m³ (kein Rohgasgeruch im Reingas)

Gesamt-C: 250 mg/m³ (anzustreben)

Nr. 5.4.9.36 Anlagen der Nr. 9.36

Gülle- und Gärrestlager

- Mindestabstand
- Lagerung von Gülle in geschlossenen Behältern oder gleichwertige Maßnahmen zur Emissionsminderung (E-Minderungsgrad gegenüber offenen Behältern für Gerüche und Ammoniak > 90%, Altanlagen ≥ 85%*).
- Einleiten von Gülle in Lagerbehälter sowie Gärresten in nicht gasdicht geschlossene Lagerbehälter hat als Unterspiegelbefüllung zu erfolgen.
- Lagerung von flüssigen Gärresten oder Prozesswasser in technisch dichten Behältern, die an Gasverwertungseinrichtungen angeschlossen sind. Verweilzeit ≥ 150 Tage oder Nachweis eines Restbiogaspotenzials maximal 3,7 Prozent (Nachweis jährlich mittels Gärtest durch unabhängiges Labor).
 (Problem der vielen offenen Güllebehälter)

usw.)

und das Thema natürliche

Schwimmschicht, Strohhäckselabdeckung

Regelungen für Biogasanlage 44. BlmSchV

Regelungen für Biogasanlage 44. BlmSchV

- (Quelle 44, BlmSchV und Fa, Energas Jenbacher INIO)
- Welche Fristen und Pflichten sie als Biogasanlagenbetreiber kennen sollten, erfahren sie nachfolgend.
- Es hängt auch vom Status ab, ob es sich um eine bestehende Anlage oder Neuanlage handelt.

	lı	nbetriebnahme	
Genehmigung § 4/§16 BImSchG	am 19.12.2018 oder früher	am 20.12.2018	am 21.12.2018 oder später
vor dem 19.12.2017	bestehende Anlage	bestehende Anlage	Neuanlage
am 19.12.2017 oder später	bestehende Anlage	Neuanlage	Neuanlage

Regelungen für Biogasanlage 44. BlmSchV

(Quelle 44. BlmSchV und Fa. Energas Jenbacher INIO)

Grenzwerte für Neuanlagen											
CO Kohlenmonoxid		NO Sticko		NH ₃ Ammonial	k Sc	SO _x hwefel- oxide	Gesamtstaub		Formaldehyd		Gesamt-C Gesamt- kohlenstoff
ab 20.06.19		bis 31.12.22	ab 01.01.23	sofern und sobald SC Kat		ab).6.19	bis 31.12.24	ab 01.01.25	bis 31.12.19	ab 01.01.20	ab 01.01.25
0,5 g/m³		0,5 g/m³	0,1 g/m³	30 mg/r	m³ 0,0	99 g/m³	kein Grenzwert	kein Grenzwert	30 mg/m ³	20 mg/m ³	1,3 g/m³
Grenzwerte für bestehende Anlagen											
bis 31.12.24	ab 01.01.25	bis 31.12.28	ab 01.01.29	sofern und sobald SCR-Kat	bis 31.12.24	ab 01.01.25	bis 31.12.24	ab 01.01.25	bis 31.12.19	ab 01.01.20	ab 01.01.29
1,0 g/m³	0,5 g/m³	0,5 g/m³	0,1 g/m³	30 mg/m ³	0,31 g/m³	0,09 g/m³	kein Grenzwert	kein Grenzwert	30 mg/m ³	30 mg/m ³	1,3 g/m³

Regelungen für Biogasanlage 44. BlmSchV -Betreiberplichten (Quelle 44. BlmSchV und Fa.

Energas Jenbacher INIO)

Betreiberplicht	Umsetzung
Registrierung von Feuerungsanlagen - Gilt nur für Einzelaggregate mit einer FWL ≥ 1 MW: Übermittlung bestimmter Informationen (Anhang 1) an die Behörde	Neuanlagen sofort*); bestehende Anlagen ab 02.12.23
 Aufzuzeichnen sind: Betriebsstunden (jedes BHKW) Art und Menge des verwendeten Brennstoffs Störungen/Ausfälle der Abgasreinigungseinrichtung Fälle, wenn Grenzwerte überschritten werden Maßnahmen zur Behebung von Störungen oder Ausfällen der Abgasreinigungseinricht 	ab sofort
 Aufzubewahren sind bis 1 Jahr nach Stilllegung: die Genehmigung sowie die zur Genehmigung zugehörigen Behördenschreiben (z.B. nachträgliche Anordnungen nach § 17 BlmSchG) Nachweis der Registrierung nach (§ 6 (4) Satz 4) Aufzubewahren sind mind. 6 Jahre: Messberichte Einzelmessungen Überwachungsergebnisse, z.B. NOx-Sensor Nachweise über effektiven Betrieb der Abgasreinigungseinrichtung Aufzeichnungen nach § 7 Abs. 1 	ab sofort

Regelungen für Biogasanlage 44. BlmSchV -Betreiberplichten (Quelle 44. BlmSchV und Fa. Energas Jenbacher INIO)

Betreiberplicht	Umsetzung
An- und Abfahrzeiten sind möglichst kurz zu halten.	ab sofort
Sofern Rußfilter an Anlagen zum Notbetrieb 4 Monate nach Inbetriebnahme: Prüfbescheinigung, dass Emissionen ≤ 5 mg/m³.	ab sofort
Über den kontinuierlichen und effektiven Betrieb der Abgasreinigungseinrichtung(en) ist ein Nachweis zu führen. Unverzüglich Maßnahmen sind ergreifen zur Wiederherstellung des ordnungsgemäßen Betriebs von Abgasreinigungseinrichtung(en) bei Ausfall - Maßnahmen sind zu dokumentieren.	ab sofort
Wenn Störung oder Ausfall an/der Abgasreinigungseinrichtung länger als 24 h muss BHKW außer Betrieb genommen werden. Unverzügliche (max. 48 h danach) Information der zuständigen Behörde.	ab sofort
Betreiber von Gas-Otto-Motoren nach dem Magerbetrieb hat die Emissionen an NOx mit geeigneten qualitativen Messeinrichtungen (z.B. NOx-Sensor) als Tagesmittelwert zu überwachen	ab sofort
Der Betreiber hat geeignete Messplätze einzurichten, er muss dafür Sorge tragen, dass geeignete Messverfahren und Messtechnik/Auswerteeinrichtungen vorhanden sind. Er hat Mess- und Auswerteeinrichtungen auf ihren ordnungsgemäßen Einbau prüfen zu lassen und regelmäßig auf Funktionsfähigkeit prüfen und kalibrieren zu lassen .Berichte über Kalibrierung und Prüfung sind der Behörde innerhalb von 12 Wochen vorzulegen.	ab sofort
Die 1. Messung spätestens 4 Monate nach Inbetriebnahme sowie eine emissionsrelevanter Änderung stattzufinden. Der Messberichtes hat bestimmte Mindestinhalten nach § 31 Abs. 6 zu enthalten und ist der Behörde nach erfolgter Messung unverzüglich vorzulegen.	ab sofort

Regelungen für Biogasanlagen gemäß 44. BlmSchV -Betreiberplichten (Quelle 44. BlmSchV und Fa. Energas Jenbacher

 Für die einzelnen Schadstoffe sind die wichtigsten Messintervalle wie folgt:

	Schadstoff							
	CO	NO _x	(NO _x und NH ₃ zusammen bei SCR-Kat) NH ₃	SO _x	CH ₂ O	Gesamt-C		
Mess- intervall	jährlich	jährlich	jährlich	alle 3 Jahre	jährlich	jährlich		

Fazit/Ausblick

- Die Umsetzung der neuen TA Luft und der 44. BImSchV stellt Biogasanlagebetreiber, Anlagenplaner und Behörden noch vor einige Herausforderungen
- Die materiellen Anforderungen bzgl. Luftreinhaltung bei Biogasanlagen sind durch die neue TA Luft sowie die 44. BlmSchV gestiegen.
- Große Herausforderung liegen insbesondere in der Altanlagensanierung
- LfULG als fachkompetente Stelle (Projekte, Veranstaltungen, Stellungnahmen) gehen wir künftige Herausforderungen gemeinsam an.

Vielen Dank für Ihre Aufmerksamkeit! Noch Fragen?

Dipl.-Ing. Torsten Moczigemba

Sächsisches Landesamt für Umwelt. Landwirtschaft und Geologie

> Postfach 54 01 37 01311 Dresden

Tel.: 0351 2612 5208 5099 Fax:

Email:

Torsten.Moczigemba@smul.sachsen.d

е

Deutsches Biomasseforschungszentrum gemeinnützige GmbH

Vorstellung und aktuelle Ergebnisse aus dem Verbundvorhaben "EmMinA: Emissionsminderung bei der Biogasaufbereitung, - verdichtung und -einspeisung"

Lukas Knoll (DBFZ)

Biogas-Fachgespräch; Leipzig, 29.11.2023

EmMinA

DBFZ

Emissionsminderung bei der Biogasaufbereitung, -verdichtung und -einspeisung

Laufzeit: Sep. 2021 – Feb. 2024

Lead: DBFZ

Fördermittelgeber: Fachagentur Nachwachsende Rohstoffe e. V. (FNR)

Partner: Rytec – Biogas und Bioenergieanlagen

Ziele:

- Ermittlung von Emissionen aus Aufbereitungs- und Nachbehandlungsanlagen
- Bewertung von Nachbehandlungstechnologien hinsichtlich Kosten, energetischen Effizienz, Leistungsfähigkeit, Emissionsminderung und den Betriebserfahrungen
- ➤ Bewertung von Methanoxidationsfiltern (MOX) zur Schwachgasbehandlung als Alternative zu den bisherigen Verfahren für Standorte mit geringeren Volumenströmen (Rytec)

Potentielle Methan Emissionsquellen

 $GWP_{100} CH_4 \rightarrow 28x \text{ stärker als } CO_2$

Lagerung / Hydrolyse

- Offene/-nicht gasdichte Behälter
- Hallenabluft (Biofilter)

Fermenter

Membrandiffusion

Gärproduktlager

- Membrandiffusion
- Offene/-nicht gasdichte Lagerung
- Nachbehandlung

OTNOC

- Leckagen
- Überdrucksicherung

• Fermenteröffnungen (Wartungsarbeiten)

Gasverwertung

BHKW

Abgas/Methanschlupf

BGAA

Abgas/Methanschlupf

OTNOC

- Leckagen
- Fackel

OTNOC: other than normal operating conditions

Hintergrund

- Ende 2022: 245 BGAA mit unterschiedlichen Aufbereitungsverfahren in Deutschland
- EU-weit aktuell Membranseparation am häufigsten eingesetzt
- Limitierung der Methanmengen im abgetrennten
 CO₂-/Abgasstrom auf (0,2 %)
- i.d.R. Abgasnachbehandlung erforderlich
- Ausnahme: Aminwäsche
- Regenerative Thermische Oxidation (RTO) am häufigsten eingesetztes Verfahren zur Abgasnachbehandlung

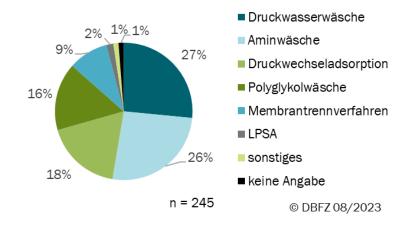
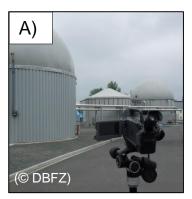


Abbildung: Verteilung der Biogasaufbereitungsverfahren in Deutschland (DBFZ, Datenstand 08/2023)

Anlagenauswahl

Anlagen- Nr.	Verfahren	Nachbehandlungs- verfahen	IBN	Einspeisekapazität (m³/h Biomethan)	Messung
A01	Membran	RTO	2014	217	10/2022
A02	Membran	RTO	2016	727	11/2022
A03	PSA	RTO	2016	700	
A04	PSA	RTO	2013	406	05/2023
A05	Membran	RTO	2019	550	09/2023
A06	Aminwäsche	-	2014	750	03/2023
A07	Aminwäsche	-	2020	945	
A08	Aminwäsche	-	2013	700	
A09	Membran	RTO	2017	350	
A10	Membran	RTO	2013	340	09/2023
A11	Membran	RTO	2015	620	04/2023
A12	DWW	RTO	2012	500	
A13	DWW	RTO	2013	1421	05/2023
A14	PSA	e-flox	2013	670	11/2023
A15	DWW		ausstehend	ausstehend	

Messungen abgeschlossen



Messmethodik

Einzelquellenanalyse (on-site Ansatz)

- Anlagenbegehung → Identifikation der
 Einzelquellen (OGI-Kamera (A), Methanlaser)
- Aufbau angepasster Messstellen in Abhängigkeit der Quellart
- Quantifizierung mittels:
- A) Einhausung (Volumenstrom + Konz.-messung)
- B) Q-OGI-Kamera (B)
- Aufsummierung der Einzelquellen zur Gesamtmethanfracht der Anlage

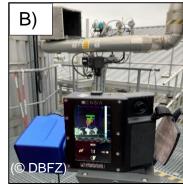
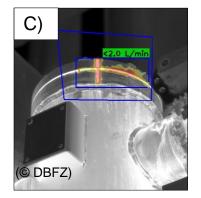
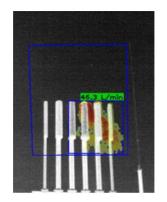
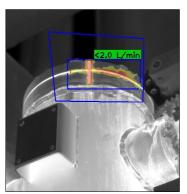
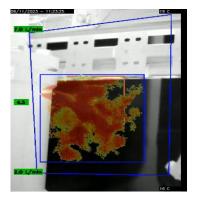
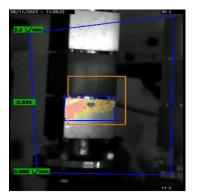



Abbildung:
A) OGI-Kamera (FLIR)
Leckagesuche an der
DBFZ-Forschungs-BGA;
B) Quantifizierung mittels
Q-OGI-Kamera (SENSIA)
C) Quantifizierung einer
Leckage an einem Flansch

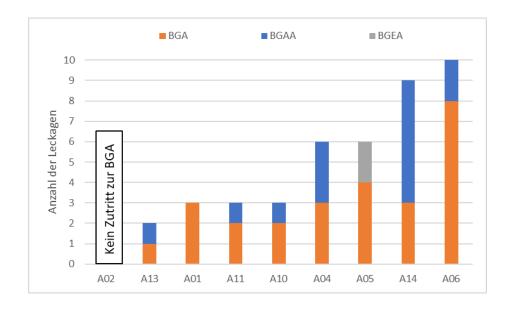



OGI – Optical Gas Imagin


Emissionsquellen an BGAA


DBFZ

- Gasführende Anlagenteile im Außenbereich
 (z. B. Flansche, Kugelhähne, Ventile, Dichtungen etc.)
- Eingehauste und über eine Zwangsbelüftung gefasste Anlagenteile (z. B. Membran-, Verdichter-, Aktivkohlecontainer)
- Abgas der BGAA nach der RTO / E-Flox (Methan, N₂O)
- Einspeiseanlage, Verdichterstation
 (z. B. Leckagen, Überdruckventile, Ausbläser für Gasanalytik)



Leckagesuche

BGA: Im Mittel 3 Leckagen pro Anlage

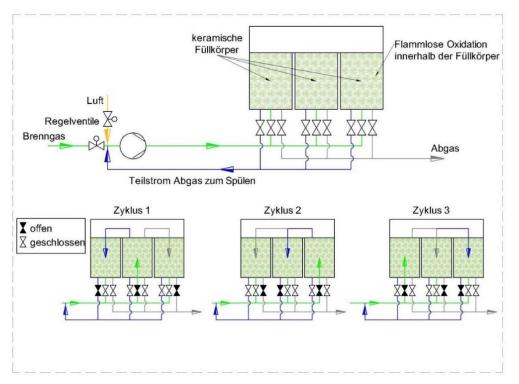
- Gasrohre, Rohrdurchführungen (8x)
- Seildurchführung Rührwerk (6x)
- Erhöhte CH4 Konz. in der Stützluft (4x)
- Über-/Unterdrucks. (Betriebsbed. Auslösung) (4x)
- Über-/Unterdrucksicherung (Leckage) (1x)

BGAA: Im Mittel 1,5 Leckagen pro Anlage

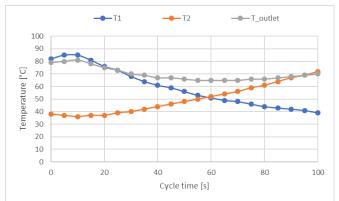
• Flansche, Ventile, Kugelhähne, Dichtungen

BGEA:

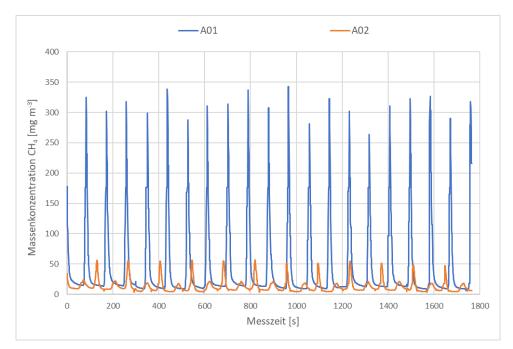
 An einer Anlage erhöhte CH4 Werte an Überdrucksicherung / Ausbläser gemessen


- BGA: Biogasanlage
- BGAA: Biogasaufbereitungsanlage

BGEA: Biogaseinspeiseanlage


- Im Mittel wurden 4 Leckagen pro Anlage gefunden
- > 1 von 7 RTOs war nicht in Betrieb

Regenerative Thermische Oxidation (RTO)



- Für CH4-Gehalte von 0.3 2 % geeignet
- >2 % CH4, e-flox oder Schwachgasbrenner
- Gas strömt in den Wärmetauscher ein, erwärmt sich und oxidiert
- Dabei kühlt sich der Einströmbereich ab
- Beim Umschalten zwischen den Zyklen bleibt unverbranntes Gas zurück
- Dies führt zu Emissionspeaks

Messung des CO₂-reichen Abgasstrom

7	Anlage	Verfahren	Max. Peak [mg m-3]	Mittelwert [mg m-3]
	A02	2-Kammer RTO mit Spülung	57	13
	A11	2-Kammer RTO mit Spülung	46	13
	A05	2-Kammer RTO	271	26
	A01	2-Kammer RTO	342	46
	A13	2-Kammer RTO	826	219
	A10	2-Kammer RTO	2745	283
	A06	ohne RTO (Aminwäsche)		414
	A04	RTO außer Betrieb	12796	6740
_	A14	E-flox		1185

20 mgC/m³ Grenzwert nur mit 2-Kammer RTO mit Rückspülung eingehalten

A01: 2-Kammer RTO ohne Spülung A02: 2-Kammer RTO mit Spülung

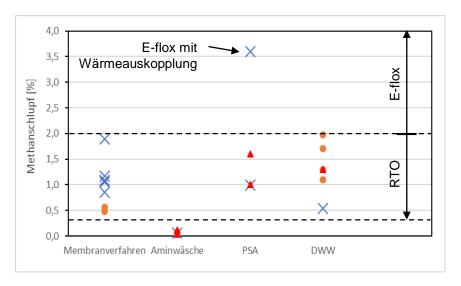
Messung des CO₂-reichen Abgasstrom

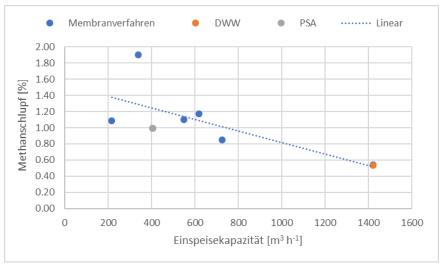
Nr.	Einspeise- kapazität	IBN	Verfahren	CH ₄ Schlupf ¹⁾	NBA ²⁾	Emissions- rate	EF-CH ₄ ³⁾	Abgastemp.
	[m³ h-1]	[Jahr]	[-]	[%]	[-]	[g _{CH4} h ⁻¹]	[%]	[°C]
A01	320	2014	Membran	1,09	RTO	36	0.02	45
A02	730	2016	Membran	0,85	RTO	24	0.01	75
A11	700	2015	Membran	1,17	RTO	21	0.01	90
A06	750	2013	Amin	0,06	-	276	0.05	-
A04	400	2013	PSA	0,99	RTO*	2504	0.86	k.A.
A13	1421	2013	DWW	0,54	RTO	561	0,06	110
A05	550	2019	Membran	1,1	RTO	30	0.01	70
A10	340	2013	Membran	1,89	RTO	666	0,27	200
A14	670	2013	PSA	3,6	E-flox	663	0.14	

¹⁾ vor der Nachbehandlung (Betreiberangabe)

Mittlerer EF-CH4 nach RTO (ohne AO4) = 0,07%

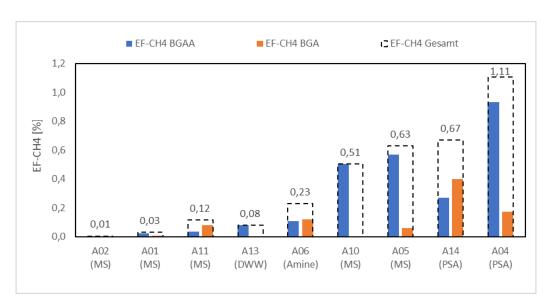
²⁾ Nachbehandlungsanlage


³⁾ Emissionsfaktor der BGAA aus dem CO2-Abluftstrom bezogen auf die durchschnittliche Biomethanproduktion der jeweiligen Anlage

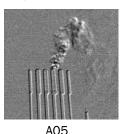

^{*} RTO zum Zeitpunkt der Messungen wegen Wartungsarbeiten nicht in Betrieb

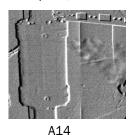
Mittlerer Methanschlupf (ohne Aminwäsche) = 1,4 %

Methanschlupf unterschiedlicher Aufbereitungsverfahren



- X EmMinA
- Kvist & Aryial, 2019


▲ MONA, 2015


Gesamt Emissionsfaktor je Anlage

MS: Membranseperation; PSA: Druckwechseladsorption; DWW: Druckwasserwäsche

- BHKW Emissionen nicht berücksichtigt
- Alle Anlagen mit gasdichtem Gärproduktlager
- A02: Kein Zugang zur Biogasanlage
- A10: Leckage an Verdichter
- A05: 80 % der Emissionen vom Ausbläser am Einspeisepunkt
- A14: 3 Überdrucksicherungen ausgelöst Leckagen an Pneumatikschiebern
- A04: RTO außer Betrieb

Mittlerer EF-CH₄: 0,35 % (n=9)

Herstellerbefragung für Nachbehandlungstechnologien

- Befragte Hersteller: Göbel; IGS-Anlagentechnik; Krantz; Lambda; Relox; Venjakob
- Markt wird von wenigen Herstellern geprägt
- Aufgrund sinkenden Methanschlupfes und den damit verbundenen geringen Konzentrationen wird meist eine RTO eingesetzt
 (1,5 g/m³ bzw. 2-3 g/m³ bzw. 0,3 % CH₄ autothermer Betrieb möglich)
- E-Flox und Schwachgasbrenner benötigen deutlich h\u00f6here Methankonzentrationen
 (>2%) → W\u00e4rmeauskopplung m\u00f6glich
- Grenzwerte 20 mgC/m³ ist nur von 3 Kammer RTO bzw. 2 Kammer mit Spülsystem einzuhalten
- Wärmeauskopplung ist vom Temperaturniveau für den Bedarf abhängig, bisher auf keiner der Anlagen realisiert

Ökonomie Nachbehandlungstechnologien - vorläufige Ergebnisse

- Datenbasis: Herstellerbefragung, punktuell Betreibende
- Betrachtungsgegenstand: 3-Kammer-RTO nach PSA, 3-Kammer-RTO nach DWW, 2-Kammer-RTO nach PSA; jedoch keine 3-Kammer-RTO bei gemessenen Anlagen dabei
- Annahmen: Betrachtungszeitraum 15 Jahre, Generalüberholung i.d.R. nach 8 Jahren notwendig, Investitionsaufwand für 2-Kammer-RTO etwa 10% niedriger als für 3-Kammer-RTO, Abgasvolumenstrom 2.200 – 3.000 m³/h
- Methodik: Investitionsrechnung (Teilkostenrechnung) auf Grundlage der Annuitätenmethode nach VDI 2067
- <u>Vorläufige</u> Ergebnisse: jährliche Kosten (Annuität) der betrachteten RTO liegen unter den zugrunde gelegten Annahmen - zwischen 58T und 64T Euro (abhängig von vorgelagerter Aufbereitungstechnologie)

Fazit und Ausblick

- Mittlerer Methanschlupf der gemessenen Anlagen (ohne Aminwäsche) 1,4 % (n=8)
- Mittlerer CH₄-EF nach der RTO/E-flox 0,07 % (n=8)
- Mittlerer CH₄-EF der Gesamtanlage 0,35 % (n=9)
- Im Durchschnitt 4 Leckagen pro Anlage detektiert
- Emissionsmessungen an weiteren 6 BGAA (in 2023 und 2024)
- RTO am weitesten verbreitet, technisch auch die einzige Lösung bei Schlupf kleiner 2%
- Wärmeauskopplung bei RTO ggf. eine zukünftige Lösung

Deutsches Biomasseforschungszentrum gemeinnützige GmbH

Smart Bioenergy - Innovations for a sustainable future

Kontakt:

M.Eng. Lukas Knoll lukas.knoll[at]dbfz.de

DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH Torgauer Straße 116

D-04347 Leipzig

Tel.: +49 (0)341 2434-112

E-Mail: info@dbfz.de

www.dbfz.de

Optische Gasdetektion zur Überprüfung von Biogasanlagen

29. November 2023 | Biogas-Fachgespräch "Emissionen an Biogasanlagen – Rechtlicher Rahmen, Messmethodik & Ergebnisse aus Praxismessungen"

Agenda

- Hintergrund
- VDI-4321:2023-12
- Praxisbeispiele
 - Australien
 - QOGI
- Exkurs Deponiegas / Einsatzmöglichkeiten OGI

Bild: Liebetrau, J.; Reinelt, T.; Agostini, A.; Linke, B. (2017): Methane emissions from biogas plants: Methods for measurement, results and effect on greenhouse gas balance of electricity produced. Link: https://task37.ieabioenergy.com/files/daten-redaktion/download/Technical%20Brochures/Methane%20Emission_web_end.pdf

METHANE EMISSIONS FROM BIOGAS PLANTS Methods for measurement, results and effect on greenhouse gas balance of electricity produced **IEA Bioenergy Task 37** IEA Bioenergy: Task 37: 2017: 12

OGI – Optical Gas Imaging
 QOGI – Quantitative Optical Gas Imaging

- TA-Luft Kapitel 5.4.1.15 Anlagen zur Erzeugung von Biogas, soweit nicht von Nummer 8.6.1 oder 8.6.2 des Anhangs 1 der 4. BlmSchV erfasst
- Messung und Überwachung: "Die Dichtheit aller gasbeaufschlagten Anlagenteile, einschließlich der Funktionsfähigkeit und Dichtheit von Armaturen, ist durch eine geeignete Person im Sinne der TRAS 120, vor Inbetriebnahme und danach alle drei Jahre zu prüfen und zu bewerten. [...] Eine Prüfung auf Leckagen mittels eines geeigneten, methansensitiven, optischen Verfahrens [OGI – Optical Gas Imaging] ist jeweils nach Ablauf von drei Jahren zwischen den Dichtheitsprüfungen durchzuführen."

- TRAS 120 2.6.4 Betrieb und Betriebsorganisation sowie Dokumentation Prüfung und Instandhaltung
- (4) Eine Prüfung auf Leckagen mittels eines geeigneten, methansensitiven, optischen Verfahrens [OGI] ist jeweils nach Ablauf von drei Jahren zwischen den Dichtheitsprüfungen durchzuführen
- TRAS 120 3.5.1 Membransysteme, Gasspeicher Allgemeine Anforderungen
- (9) Bestehende einschalige Membransysteme müssen täglich auf mechanische Beschädigungen kontrolliert, mindestens wöchentlich an relevanten Stellen wie z. B. dem Behälteranschluss und Revisionsöffnungen der Membrane mit Hilfe von transportablen Gasspürgeräten und mindestens halbjährlich mit Hilfe von methansensitiven optischen Verfahren (Gaskamera) auf Leckagen geprüft werden. Das Ergebnis der Prüfung ist gemäß Kapitel 2.6.4. Absatz 1 zu dokumentieren.

- TRGS 529 mit Stand von 02/2015 empfahl bereits "bildgebende Verfahren mit Methan sensitiven Kameras"
- Bis zur Erarbeitung der VDI 4321 keine einheitlichen bzw. genormten Regelungen
- Vorgehensweise QMaB¹

¹ OMaB – Arbeitskreis: "Qualitätssicherung Methanemissionsmessung an Biogasanlagen

VDI-4321 - Inhalt

Titel: Diffuse Emissionen - Optische Gasdetektion zur Überprüfung von Anlagen -Biogasanlagen

- Anwendungsbereich
- Grundlage des Verfahrens
- Anforderungen an die Messtechnik
- Vorgehensweise
- Prüfung und Wartung der Messgeräte
- Dokumentation
- Explosionsschutz / Personalqualifikation (TRGS 720 / TRGS 529 / TRAS 120)

Link Inhaltsverzeichnis: https://www.vdi.de/fileadmin/pages/vdi_de/redakteure/richtlinien/inhaltsverzeichnisse/3488380.pdf

VDI-4321 - Anwendungsbereich

- Methodik zur Leckagedetektion unter Nutzung von OGI¹
- Was wird von der Richtlinie nicht abgedeckt?
 - QOGI²
 - Emissionen in der Stützluft von Doppelmembrangasspeichern (DWA-M 375)
 - Emissionsminderungsmaßnahmen

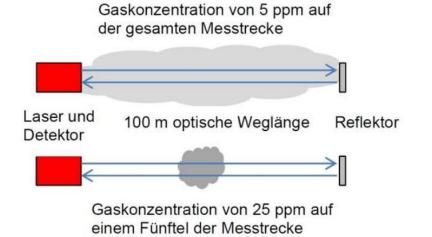
29.11.2023

¹ OGI – Optical Gas Imaging

² QOGI – Quantitative Optical Gas Imaging

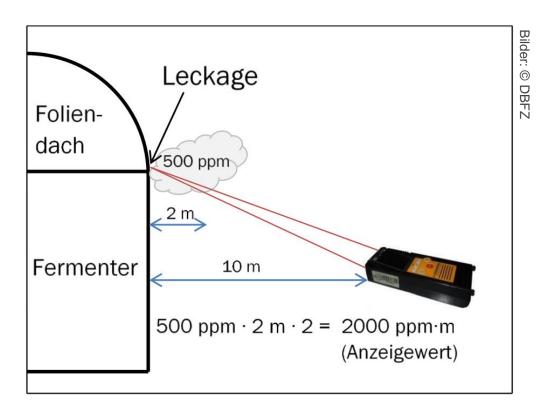
VDI-4321 – Grundlage des Verfahrens

Passives


Verfahren:

OGI

VDI-4321 – Grundlage des Verfahrens


- Aktives Verfahren: Open-Path-Laser
- Gasmessgeräte
- Siehe auch DVGW G 465-4

Konzentrationsmessung in beiden Beispielen:

pfadintegriert: 500 ppm·m

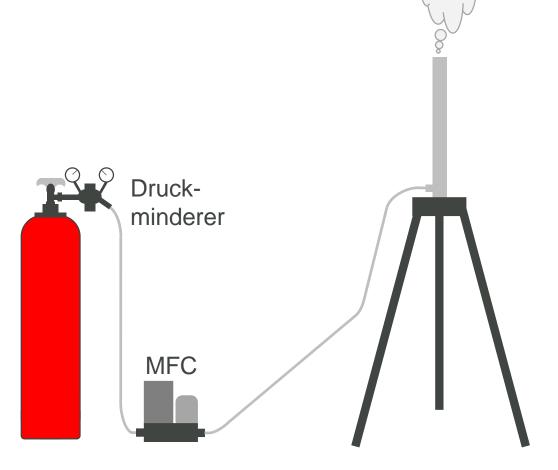
pfadgemittelt: 5 ppm

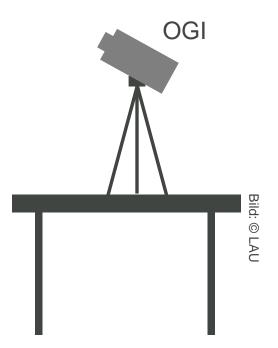
VDI-4321 – Anforderungen an die Messtechnik

- Vorgaben für die drei Gerätearten, u. a. zu (Liste nicht abschließend)
 - Messbereich
 - Empfindlichkeit
 - Nachweisgrenze
 - Detektor
 - Sicherheitsaspekte (ATEX)

VDI-4321 – Vorgehensweise

- Messplanung
 - Randbedingungen
 - Anlage
 - Meteorologie
 - Übersichtskarte
- Prüfablauf
 - Kamerapositionen
 - Detektion / Verifikation der Gasaustritte




VDI-4321 – Prüfung und Wartung der Messgeräte

Arbeitstägliche
 Funktionsprüfung

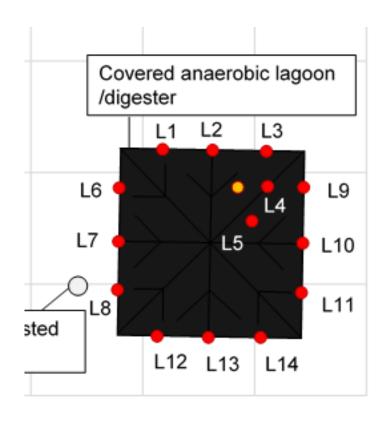
• DVGW G 465-4

CH₄- / Biogas-Gasflasche

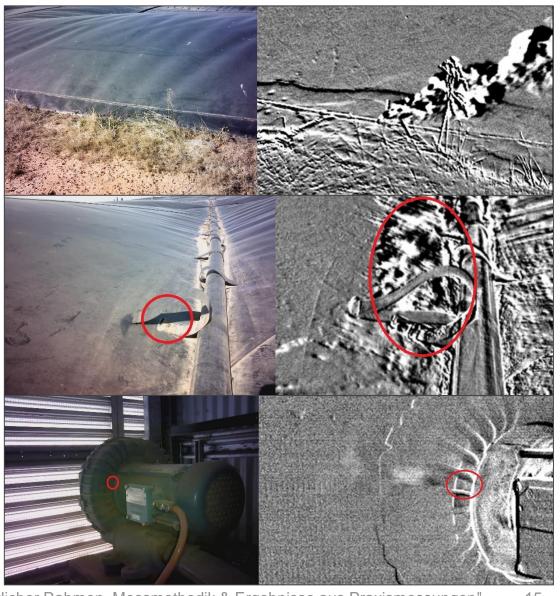
VDI-4321 – Dokumentation

- Nachvollziehbarkeit der Ergebnisse
- Allgemeine / prüfungsbezogene Angaben
 - Wetter
 - Betriebszustand
- Wiederauffinden der Leckagen durch Betreiber / Behörde

Praxisbeispiele – Australien


Schweinemastbetrieb mit Biogasanlage

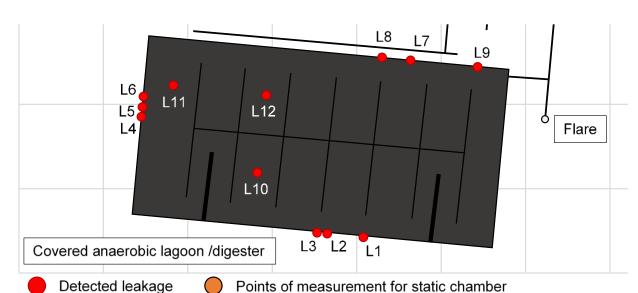
- CAL (Covered Anaerobic Lagoon)
- CAL 80 m x 80 m Oberfläche
- Substratmix aus Schweinegülle, Futterresten, Prozesswasser
- 2x BHKW $P_{el} = 600 kW$



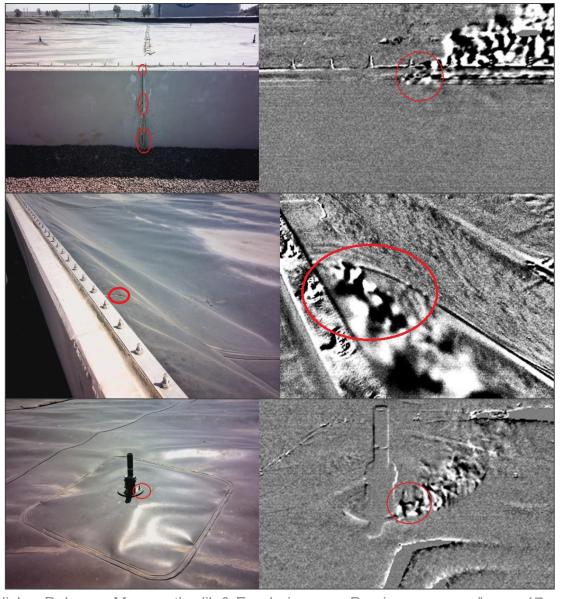
Praxisbeispiele – Australien Schweinemastbetrieb mit Biogasanlage

Bilder: © DBFZ / USQ - CAE

Daten: Reinelt et al. (2022) - https://doi.org/10.1016/j.wasman.2021.11.012


Praxisbeispiele – Australien Schlachtbetrieb mit Biogasanlage

- CAL 85 m x 40 m Oberfläche
- Prozessabwasser aus der Lebensmittelverarbeitung
- Biogas-Heizkessel
- $P_{th} = 350 \text{ kW}$



Praxisbeispiele – Australien Schlachtbetrieb mit Biogasanlage

Bilder: © DBFZ / USQ - CAE

Daten: Reinelt et al. (2022) - https://doi.org/10.1016/j.wasman.2021.11.012

Praxisbeispiele – Leckagen im Vergleich

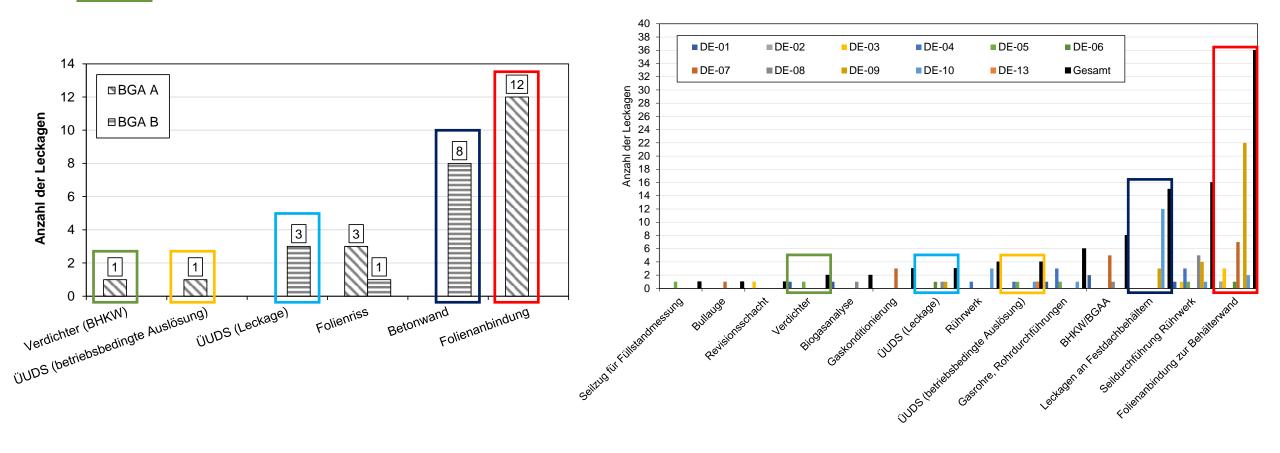


Bild links: angepasst nach Reinelt et al. (2022) - https://doi.org/10.1016/j.wasman.2021.11.012
Bild rechts: Reinelt & Clauß (2021): Methanemissionen bei der Biogaserzeugung und deren Minderung. In: Biogas Journal, 1_2021, S. 113–115

Praxisbeispiele – QOGI

Bilder: © DBFZ

Exkurs Deponiegas / Einsatzmöglichkeiten OGI

- Rechtliche Grundlagen
 - KrWG, DepV
 - BlmSchG, 4. BlmSchV, 4. BlmSchV, 44. BlmSchV, TA-Luft
 - BetrSichV, GefStoffV
- § 12 Abs. 3 Nr. 2 DepV / Anhang 5 Nr. 7 DepV
- "Entsteht auf einer Deponie […] Deponiegas in relevanten Mengen, hat der Betreiber […] dieses Deponiegas […] zu fassen und zu behandeln, nach Möglichkeit energetisch zu verwerten. Deponiegaserfassung, behandlung und -verwertung sind nach dem Stand der Technik durchzuführen. Die Länder legen hierfür bundeseinheitliche Qualitätsstandards [BQS] fest. […]"
- BQS 10-1 (Deponiegas) / BQS 7-3 (Methanoxidationsschichten)

Exkurs Deponiegas / Einsatzmöglichkeiten OGI

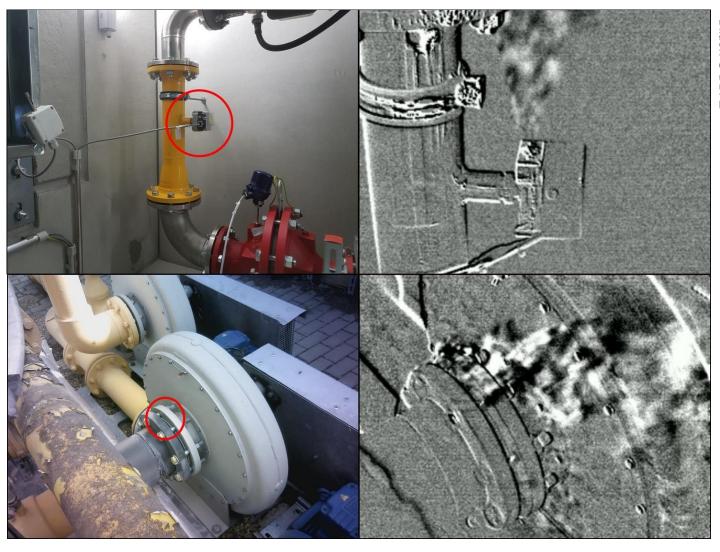
BQS 10-1 - Tabelle 1

29.11.2023

- Einsatz von OGI bei nicht deponiegebundenen Anlagenkomponenten möglich
- Bisher nicht (oder nur geringfügig) im Bereich Deponiegas etabliert

Deponiegebundene Komponenten

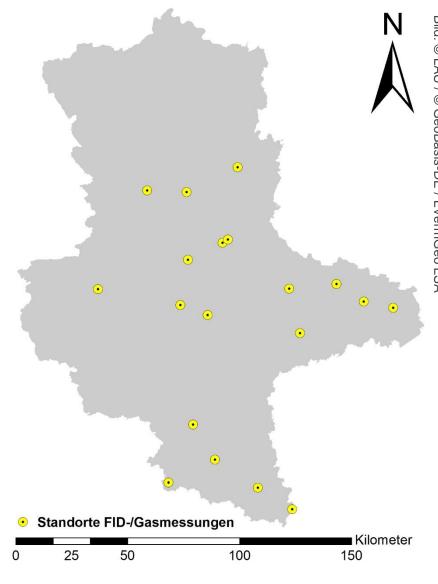
- Gaserfassungssystem:
 - Gaskollektoren
 - vertikal (Gasbrunnen)
 - horizontal (Gasdränagen)
 - Gassammelleitungen (zwischen Gaskollektor und Gassammelstation)
 - Gassammelstationen (GSS) mit Gassammelbalken und Messstrecken
 - ggf. Hauptsammelstationen: Zusammenführung der Leitungen von Gassammelstationen
 - Gasansaugleitungen
 (zwischen Gassammelstation und Gasfördereinrichtung)
 - Entwässerungseinrichtungen (Kondensatabscheider) vor der Gasfördereinrichtung und an Tiefpunkten des Deponiegasleitungssystems
 - o Methanoxidationsschicht, -fenster


Nicht de poniegebundene Anlagenkomponenten

- Gasförderung und -transport
 - Gasfördereinrichtung (Verdichter)
 - Gastransportleitung (zwischen Gasfördereinrichtung und Gasbehandlungsanlage)
- Gasreinigung
- Gasspeicherung
- thermische Behandlung
 - Hochtemperaturfackel
 - Hochtemperaturfackel für Schwachgas
 - Hochtemperaturfackel mit Wärmenutzung
 - o Schwachgasbrenner
 - o Flammenlose Oxidation
 - o Regenerative thermische Oxidation
- Stromerzeugung und ggf. Wärmeauskopplung durch Kraftmaschinen
 - Gasmotor
 - Gas-Ottomotor
 - Zündstrahlmotor
 - Gasturbine
 - o Alternative Techniken
- biologische Behandlung
 - Biofilter

Exkurs Deponiegas / Einsatzmöglichkeiten OGI

- Gasförderung / Gasmotoren
- Gasspeicherung
 https://www.lr online.de/lausitz/luebben/ein
 maliges-projekt abfallentsorger-macht-in luebben-strom-aus-muell 45721227.html


Exkurs Deponiegas

- Ausgewählte technische Grundlagen Deponiegas (nicht abschließend) des BQS 10-1
 - VDI 3790 Blatt 2 Emissionen von Gasen, Gerüchen und Stäuben aus diffusen Quellen –
 Deponien
 - VDI 3860 Blatt 3 Messen von Methan an der Deponieoberfläche mittels Saugglockenverfahren (umgangssprachlich: FID-Begehung)
 - VDI 3860 Blatt 4 Messungen im Untergrund (umgangssprachlich: Pegelmessung)
 - VDI 3899 Blatt 1 / Blatt 2 Deponiegasverwertung und –behandlung / Systeme zur Deponiegaserfassung und Belüftung

Exkurs Deponiegas

- FID-Begehungen (17 Standorte)
- Gaspegelmessungen (9 Standorte)
- Amtshilfe für
 - Behörden Sachsen-Anhalt (LVwA¹, LAGB², UAB³)
 - Eigenbetriebe der Landkreise

¹ Landesverwaltungsamt

² Landesamt für Geologie und Bergwesen

³ Untere Abfallbehörden

Vielen Dank für Ihre Aufmerksamkeit!

Dipl.-Ing. (FH) Torsten Reinelt

torsten.reinelt@lau.mwu.sachsen-anhalt.de

+49 345 5704 486

Landesamt für Umweltschutz Sachsen-Anhalt

Reideburger Straße 47

06116 Halle (Saale) / Deutschland

LEIPZIGER FACH-GESPRÄCHE

Leipziger Biogasfachgespräch Emissionen an Biogasanlagen DBFZ

29.11.2023

Dr.-Ing. Stephan Mattersteig

44. BImSchV

Neue Anforderungen und Betreiberpflichten von BHKW-Modulen

Inhalt der Präsentation

- 1. Einleitung
- 2. Die Forderungen der 44. BImSchV
- 3. Umsetzung der LAI-Vollzugshinweise zur Zahlung des Formaldehydbonus Flickenteppich Deutschland
- 4. Voraussetzungen für die Einhaltung des abgesenkten NOx-Grenzwertes
- 5. Der neue Gesamtkohlenstoff-Grenzwert
- **6.** Zusammenfassung und Ausblick

Einleitung

Kurzportrait - Mattersteig & Co. Ingenieurgesellschaft mbH

- 1991 Firmengründung mit drei Mitarbeitern
- seit 1994 bekanntgegebene Messstelle (gemäß §29b BImSchG)
- heute Team von 37 Mitarbeitern
- Tätigkeitsbereiche:
 - Emissionsmessungen
 - Funktionsprüfungen & Kalibrierungen
 - Ermittlung von Verbrennungsbedingungen
 - Bestimmung von Geruchsstoffkonzentrationen
 - Laboranalysen
 - Forschung & Entwicklung

Einleitung - Firmenneubau

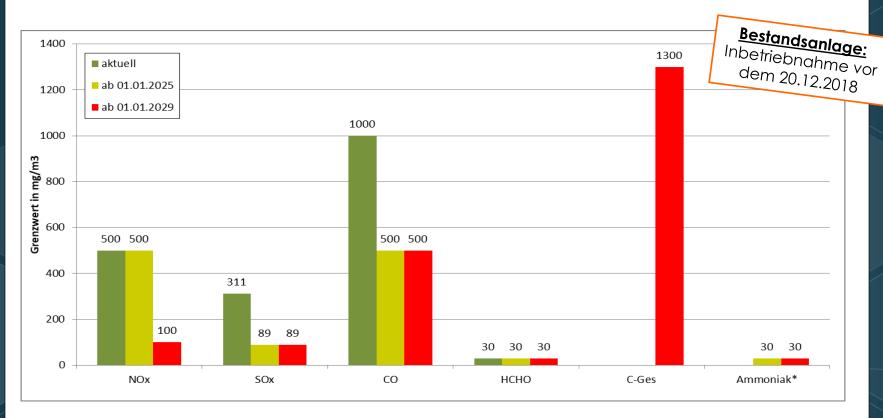
Die Forderungen der 44. BImSchV

WIE WIRD DIE 44. BImSchV VOLLZOGEN?

"Die 44.BImSchV ist als selbstvollziehendes Spezialrecht anzusehen, dass keiner behördlichen Anordnung bedarf."

[Stellungnahme eines Landkreises aus Sachsen-Anhalt zur 44. BImSchV]

Zusammenfassung der Forderungen

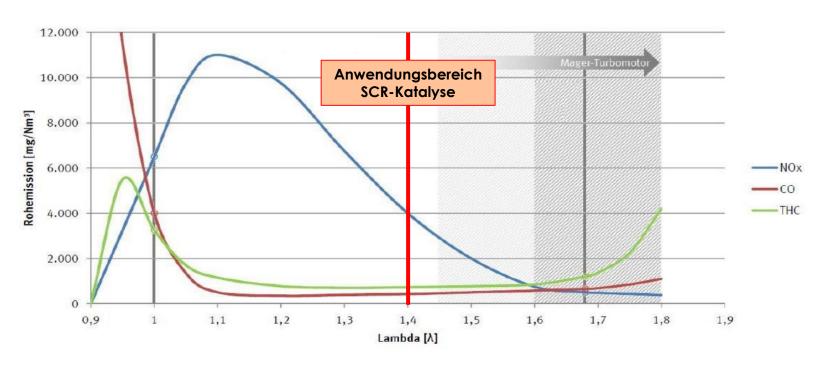

- o neue Grenzwerte für Bestands- und Neuanlagen
- Nachweis über kontinuierlichen Betrieb des Katalysators
- 24 h Zeit für Handlungsmaßnahmen bei nicht bestimmungsgemäßem Betrieb der Abgasreinigungseinrichtung
- o max. 400 h/a Betrieb ohne Abgasreinigungseinrichtung
- o kontinuierliche NO_x-Überwachung als Tagesmittelwert
- o neue Messkomponenten seit 2023

Die neuen Grenzwerte der 44. BImSchV

Die Grenzwerte der 44. BImSchV Biogasmotorenanlagen-Bestandsanlagen

^{*} Falls an den BHKW-Modulen eine SCR-Anlage verbaut ist, gilt nach 44. BImSchV ein Grenzwert für Ammoniak, dieser Entfällt bei Nachschaltung eines Oxidationskatalysators

Die Grenzwerte der 44. BImSchV Biogasmotorenanlagen-Neuanlagen


* Falls an den BHKW-Modulen eine SCR-Anlage verbaut ist, gilt nach 44. BImSchV ein Grenzwert für Ammoniak, dieser Entfällt bei Nachschaltung eines Oxidationskatalysators

Das Magermotorprinzip

Zielkonflikt Wirkungsgrad und Grenzwerteinhaltung

- höchste Wirtschaftlichkeit: geringer Luftüberschuss
- niedrige NOx-Emissionen: hoher Luftüberschuss
- steigender Methanschlupf bei höheren λ -Werten!

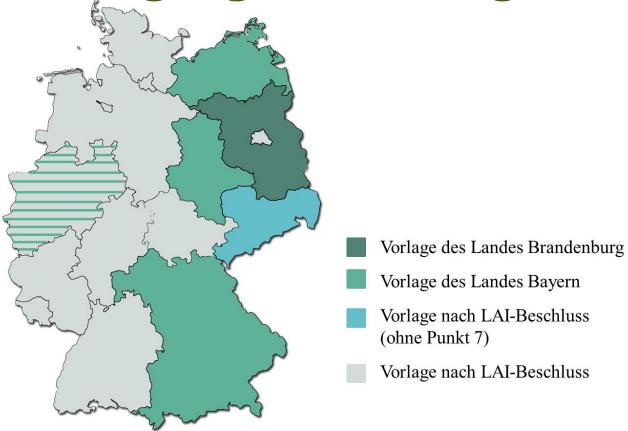
Umsetzung der LAI-Vollzugshinweise zur Zahlung des Formaldehydbonus

Flickenteppich Deutschland

Kontrolle der Erfüllung aller Anforderungen

o jährliche Kontrolle durch die §29b Messstellen im Rahmen der

Emissionsmessungen


 Orientierung an Anhang A des LAI-Beschlusses

Bundeslandspezifische Auslegung des Anhang A

Grundlegende Punkte der LAI-Forderung

Punkt	Zu prüfende Parameter
Punkt A1	Kenndaten des betroffenen Motors
Punkt A2	Dokumentation emissionsrelevanter Parameter & Zugangsbeschränkung
Punkt A3	Dokumentation der Verplombung des Oxidationskatalysators
Punkt A4	Dokumentation der Temperaturüberwachung des Oxidationskatalysators
Punkt A5	Dokumentation zur Überwachung des Schwefelgehaltes
Punkt A6	Überwachung der NOx-Emissionen
Punkt A7	Abschließende Beurteilung

Grundlegende Unterschiede der LAI-Vorlage des Landes Bayern

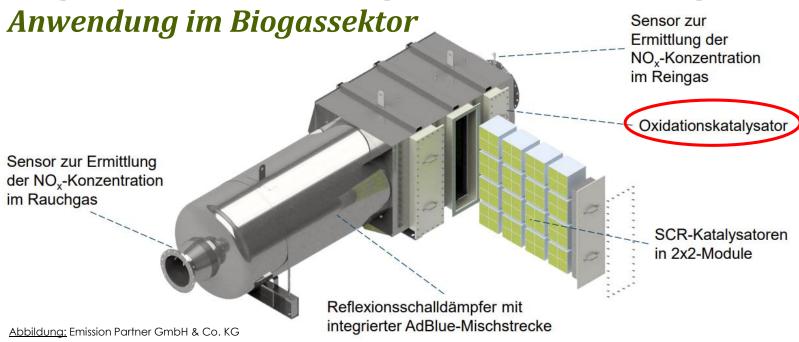
- Die Forderung, dass die Anzahl der Tage mit Überschreitungen und fehlendem Tagesmittelwert kleiner als 5 % der Betriebstagesein soll, entfällt!
- Möglichkeit des Betreibers verbindliche Abhilfemaßnahmen einzuleiten, um unter Punkt A7 eine Erfüllung bescheinigt zu bekommen
- Sachsen-Anhalt und Mecklenburg-Vorpommern folgen dem bayerischen Vorbild
- Das Land Brandenburg hat Teile dieser Vorlage übernommen.

.7)	Zusammenfassung												
	Die Zusammenfassung erfolgt auf der Basis der nach diesem Anhang geprüften und dokumentierten Sachverhalte $A.1)-A.6$).												
	Hinweis: Zur Erhaltung der EEG-Zusatzvergütung ist vom Betreiber der Anhang A zusammen mit dem Messbericht erst dann der zuständigen Behörde vorzulegen, wenn unter Punkt A.7) (mindestens) ein "JA" vermerkt ist.												
	Anforderungen nach Prüfumfang dieses Anhangs erfüllt? □ja □nein												
	Falls nein: vorgesehene Maßnahme und geplanter Erfüllungstermin zu jedem nicht erfüllten Punkt:												
	Ggf. sonstige Anmerkungen (mit Bezug zu A.2) –A.6)):												
	Wurden die vorgeschlagenen Maßnahmen erfüllt? □ia ⁶ □nein												

Unser Service: wir bieten eine normgerechte Vorlage und eine Videoerklärung zu wichtigen Punkten der LAI-Forderung

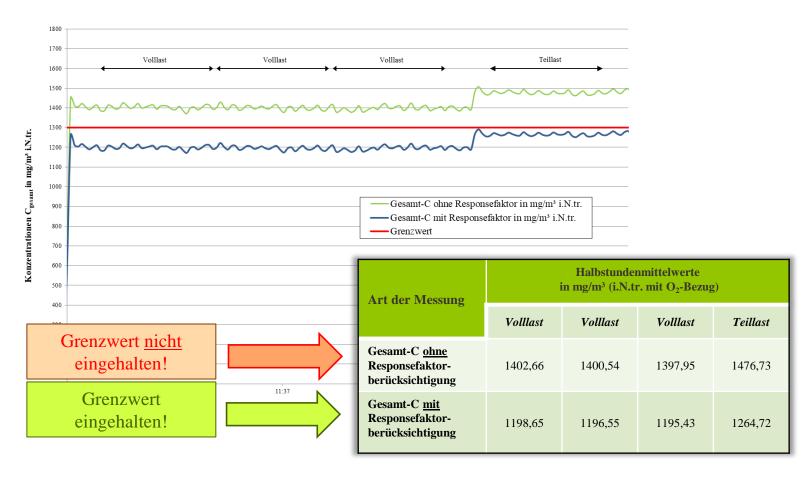
- Eine Vorlage zum Logbuch nach
 44. BImSchV und VDMA 6299 finden
 sie unter untenstehendem Link
- In unserem Video erläutern wir Ihnen alle wichtigen Einzelheiten zu den geforderten Punkten

https://mattersteig-und-co.de/portfolio/emissionsmessungen-44-bimschv-logbuch/

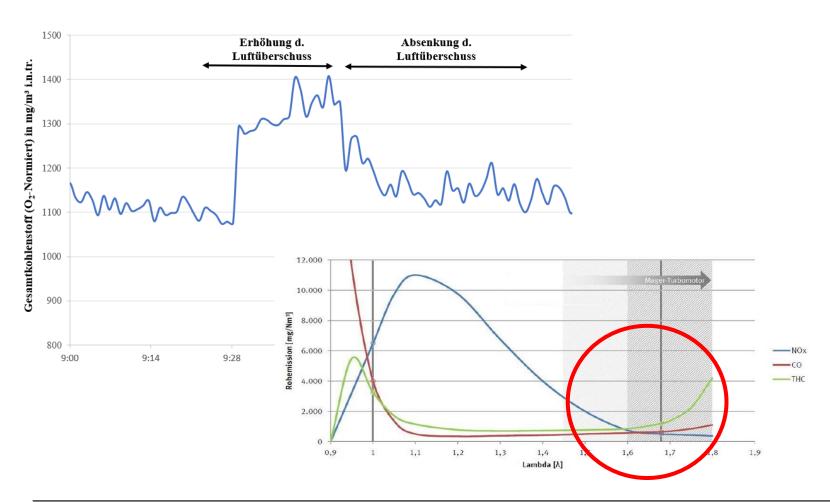


Voraussetzungen für die Einhaltung des abgesenkten NOX -Grenzwertes

Abgasnachbehandlung mittels SCR-Anlagen


Schätzungen zu folge haben nur 50 % der Flex-BHKW, für die seit 2023 ein neuer NOx-Grenzwert gilt, bereits eine SCR-Anlage verbaut!

Der neue Gesamtkohlenstoff-Grenzwert


Anwendung des gerätespezifischen Response-Faktors Vergleichsmessung an einem BHKW einer Biogasanlage (Flex-modul)

Einfluss des λ-Wertes auf den C-gesamt Gehalt Versuchsmessung an einem BHKW einer Biogasanlage

Zusammenfassung der Erkenntnisse aus Sicht des Messinstitutes

Zusammenfassung

- Die Emissionsmessungen von CO und SO₂ stellen auch trotz der neuen Forderung und strengeren Grenzwerte keine Herausforderung für die meisten Anlagen dar
- \circ Noch immer halten ca. 5 7 % der gemessenen Anlagen den Formaldehydgrenzwert nicht ein!

häufige Ursachen:

- → Katalysator zu stark gealtert
- → falsche Dimensionierung des Katalysatorvolumens
- → fehlerhafter Einbau des Katalysators (HCHO-Schlupf)
- → "Ausbrennen" des Katalysators durch Methanschlupf

Zusammenfassung

- Der Katalysator muss in einigen Ländern mind. 3 Monate vor Messung verbaut werden (z.B. Hessen und Sachsen)
 - → führt teils zu Problemen
- Der aktuelle NOx-Grenzwert von 500 mg/m³ für Bestandsanlagen stellt seit der Forderung der qualitativ-kontinuierlichen Überwachung kein Problem mehr dar
- Der Zielkonflikt zwischen Grenzwerteinhaltung und Wirkungsgrad bei Neuanlagen ist im Bereich der NOx-Emissionen nur mit einer SCR-Anlage zu lösen
- NOx-Einstellung über Veränderungen des λ-Wertes haben signifikanten Einfluss auf dem Gesamt-C Gehalt im Abgas!

Ausblick auf künftige Entwicklungen

Ausblick auf künftige Entwicklungen

- <u>Zu beobachtende Tendenz im Bereich Biogas:</u> für kleinere Anlagen sind die Anforderungen der 44. BImSchV teils schwer zu erfüllen!
- Vermehrter Verkauf von Anlagen an große Unternehmensgruppen zu beobachten
- Die neuen Grenzwerte für Bestandsanlagen ab 2029 werden diesen Effekt massiv verstärken

MATTERSTEIG & CO.

Vielen Dank für Ihre Aufmerksamkeit!

Mattersteig & Co. ingenieurgesellschaft

für Verfahrenstechnik und Umweltschutz mbH

Bekanntgegebene Messstelle nach § 29b BlmSchG

Dr. Stephan Mattersteig (Geschäftsführer und Fachlich Verantwortlicher)

> Wirtschaftsweg 27 04420 Markranstädt

Tel.: (034205) 758-0 Fax: (034205) 758-50

E-Mail: info@mattersteig-und-co.de Internet: www.mattersteig-und-co.de

Erste Erfahrungen mit der Qualitativ-kontinuierlichen Überwachung von Stickoxiden

Häufige Probleme verbauter NOx-Überwachungssysteme

- Alarmschwellen sind in vielen Systemen nicht auslesbar/einsehbar
- Alarme und Fehlermeldungen werden nicht registriert/sind nicht auslesbar
- o oftmals keine Ausfallzeitenregistrierung
- Mittelwertbildung ist nicht nachvollziehbar (einige Systeme bilden "fortlaufende Mittelwerte")
- Sauerstoffbezug nicht erkennbar
- Einheiten werden nicht ausgegeben

Häufige Probleme verbauter NOx-Überwachungssysteme

- Sensordaten vor Ort oft nicht auslesbar
- o öfters keine Temperaturaufzeichnung
- Formate der Ausgabedatein wechseln
- o öfters keine Daten gespeichert

Die größte Herausforderung für das Messinstitut liegt in der Auswertung der unterschiedlichsten Ausgabeformate

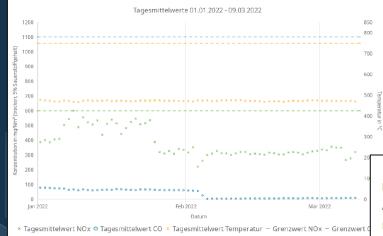
Ausgewählte Beispiele der NOx-Ausgabedaten

Manipulationssicherheit von Excel-Dateien?

X	₩ 19 - C	- -					
	Star	t Einfügen	Seitenlayout	Formeln	Daten (Überprüfen	Ansich
	Auss 🔏 Auss	schneiden	Calibri	- 11 ·	A A ■	= <u> </u>	≫
_	Kop	ieren 🕶					
Einf	fügen Forn	nat übertragen	F K U	- 🖽 - 🕭	• <u>A</u> •		
	Zwischenab	olage 🗔	S	chriftart	Fa Fa		Aus
	J19	+ (-)	f _x				
1	А	В	С	D	Е	F	G
1	Historie						
2	Export-Datun	19.07.2022					
3	Seriennumm	20.410.040.001					
4	Anlagenname	2					
5	Motornumme	er					
6							
7	Datum	Uhrzeit	Event	Feld	Wert	Einheit	
8	23.03.2021	12:44:11	StateChange	heater	1		
9	23.03.2021	23:59:00	Day	operating ho	11	h	
10	24.03.2021	08:54:29	StateChange	heater	0		
11	24.03.2021	09:07:45	StateChange	heater	1		
12	24.03.2021	09:11:36	StateChange	heater	0		
13	24.03.2021	09:19:54	StateChange	heater	1		
14	24.03.2021	09:50:54	Interval	nox	477,3	mg/m3	
15	24.03.2021	09:50:54	Interval	o2	8,2	Vol.%	
16	24.03.2021	09:50:54	Interval	temperature	434,4	°C	
17	24.03.2021	09:50:54	Interval	analog2	14,6	°C	
18	24.03.2021	10:20:54	Interval	nox	450	mg/m3	
19	24.03.2021	10:20:54	Interval	o2	8,1	Vol.%	
20	24.03.2021	10:20:54	Interval	temperature	429,2	°C	
21	24.03.2021	10:20:54	Interval	analog2	14,6	°C	
22	24.03.2021	10:50:54	Interval	nox	433,8	mg/m3	
23	24.03.2021	10:50:54	Interval	o2	8,1	Vol.%	
24	24.03.2021	10:50:54	Interval	temperature	453	°C	
25	24.03.2021	10:50:54	Interval	analog2	14,6	°C	
26	24.03.2021	11:20:54	Interval	nox	467	mg/m3	
27	24.03.2021	11:20:54	Interval	o2	8,1	Vol.%	
28	24.03.2021	11:20:54	Interval	temperature	434,9	°C	
29	24.03.2021	11:20:54	Interval	analog2	14,6	°C	
30	24.03.2021	11:50:54	Interval	nox	470,9	mg/m3	
31	24.03.2021	11:50:54	Interval	o2	8,2	Vol.%	
32	24.03.2021	11:50:54	Interval	temperature	434,4	°C	
22	24.02.2021	11.50.54	Intonial	2021002	14.6	٥,	

Aufwendige Umformatierung der Datenreihen nötig!

Zusammenfassung


BHKW

Betriebsstunden:

1588

Ausfallzeiten: 0

Messkomponente	Einheit	Emissionsbegrenzung	Emissionsbegrenzung inkl. Toleranz
Stickstoffoxide NO _X	mg/Nm³	500	600
Kohlenmonoxid CO	mg/Nm³	1000	1100
Temperatur T	°C	350-550	750

Beispiel eines optimalen Überwachungssystems:

- Tagesmittelwerte und deren Überschreitungen sind nachvollziehbar und visualisiert dargestellt
- Einfache Kontrollmöglichkeit für den Betreiber, das Messinstitut und die Überwachungsbehörde
- Manipulationssicherheit dank geschütztem Format

Klassierung

Betriebsstunden: 1588

Ausfallzeiten: 0

Betriebsart: Biogas

Zeitraum: 01.01.2022 - 09.03.2022

Betriebstage: 67

Klasse	NO _x	со	Temperatur
S1	53	67	67
S2	14	0	0
S3	0	0	0
S4	0	0	0
S5	0	0	0
Störungen	0	0	0
Alarme	0	0	0

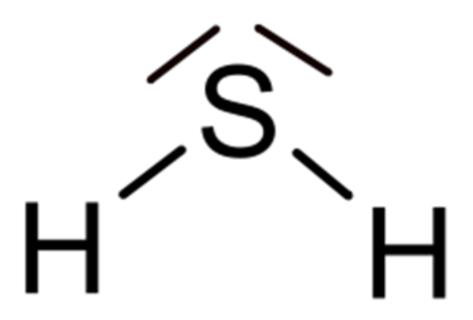
- S1 Gültiger TMW: Einhaltung Grenzwert
- S2 Gültiger TMW: Keine Einhaltung Grenzwert / Einhaltung Toleranz
- S3 Ungültiger TMW: Keine Einhaltung Grenzwert / Keine Einhaltung Toleranz
- S4 Kein TMW: Zu geringe Datenlage (# HMW < 6)
- S5 Gültiger TMW: Aus Ersatzwerten gebildet

Ermittlung des H₂S-Gehaltes in Behältern von Biogasanlagen – Anwendung der Ergebnisse in der Praxis

LANDESAMT FÜR UMWELT,
LANDWIRTSCHAFT
UND GEOLOGIE

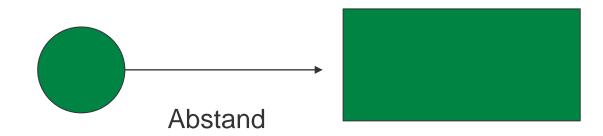
Freistaat
SACHSEN

Biogas-Fachgespräch – 29. November 2023



Gliederung Vortrag

- 1. Hintergrund zum Projekt
- 2. Projektdurchführung
- 3. Projektergebnisse
- 4. Anwendung in der Praxis



Hintergrund zum Projekt

- I Betriebsbereiche im Sinne von § 3 Abs. 5a BImSchG haben gegenüber von Schutzobjekten einen angemessenen Sicherheitsabstand einzuhalten.
- I Grundlage für die Ermittlung ist der Leitfaden 18 der Kommission für Anlagensicherheit (KAS 18), speziell für Biogasanlagen zusammen mit der Arbeitshilfe KAS 32
- Im KAS 32 wird insbesondere der im Biogas enthaltene Schwefelwasserstoff (H₂S) als entscheidend für den Sicherheitsabstand definiert und ein Achtungsabstand von 200m ermittelt
- I Grundlage ist dabei u.a. ein H₂S-Gehalt von 2% im austretenden Biogas und das Überschreiten des ERPG-2-Werts für H₂S von 30 ppm (ERPG Emergency Response Planning Guidelines; Störfall-Konzentrationsleitwert)
- bei Vorliegen spezieller Kenntnisse zur verwendeten Technik bei den Biogasanlage und zum H₂S-Gehalt des konkreten Anlagen- und Substrattyps k\u00f6nnen nach KAS 32 diese Konzentrationen ver\u00e4ndert und die Abst\u00e4nde verringert werden. Diese Abweichungen von den o.g. Ma\u00dfgaben sind herzuleiten; Nachweise sind anzugeben und Annahmen plausibel zu begr\u00fcnden.
- I Projektziel war es deshalb diese Nachweise zu erbringen

Hintergrund zum Projekt (Folien Torsten Reinelt DBFZ)

Gefährdungspotenzial durch H₂S

Hauptaufnahme über Atemtrakt

- Wirkungsweise: unangenehmer Geruch; Reizung der Augen, Ausfall des Geruchsinns; Lebensbedrohliche Einwirkung auf Herz-Kreislaufsystem
- Ab 0,02 ppm Geruch wahrnehmbar (Adaption!)
- 5–10 ppm erhebliche Belästigung (kurzzeitige Exposition (15–30 min) unkritisch
- 10–30 ppm Augenreizung
- 100 ppm kurze Exposition: keine Wahrnehmung (Erschöpfung des Geruchsinns)
- 150 ppm und 30 min Expos.: Kopfschmerz, Schwindel, Durchfall
- 300–500 ppm Gefahr von Lungenschäden (außerdem wie vor), Ataxie, Atemnot, Tachyocardie, bis Bewusstlosigkeit

Projektdurchführung – 1.Teil

- LANDESAMT FÜR UMWELT,
 LANDWIRTSCHAFT
 UND GEOLOGIE

 Freistaat
 SACHSEN
- I Konzepterstellung zur Ermittlung des Schwefelwasserstoff-Gehalts von Biogasanlagen
- I Entwicklung Messkonzept für Praxisuntersuchungen (Es wurden Messungen an der Forschungsbiogasanlage (FBGA) des Deutschen Biomasseforschungszentrums (DBFZ) durchgeführt)
- Verwendet wurde ein Biogas-Monitor 5000 an verschiedenen Messstellen, eine Probenahme über einen Gassack und über ein AWITE Gasanalyse-System. Es wurde in verschieden Schichten gemessen um zu prüfen ob unterschiedliche H₂S-Gehalte vorhanden sind.

- Sonnenaufgang an der FBGA; Quelle: DB
- Im Ergebnis wurde eine Direktmessung mittels tragbaren sowie regelmäßig gewarteten und kalibrierten Biogasmonitors empfohlen. Vor Beginn und nach Ende der Untersuchung einer Anlage ist das Gerät mit einem geeigneten H₂S-Prüfgas zu kalibrieren. Die Prüfgaskonzentration sollte in einem vergleichbaren Konzentrationsbereich wie die erwartete H₂S-Konzentration an der untersuchten Anlage liegen.
- I An jeder zu beprobenden Probenahmestelle sind fünf Einzelmessungen durchzuführen und zu dokumentieren. Zwischen den Einzelmessungen ist das Gerät bis Erreichen des Nullpunktes zu spülen. Erst danach ist die nächste Einzelmessung einzuleiten.
- I Die Probenahme erfolgt ca. 2 m entfernt von der Rohrverbindung zum betrachteten Fermenter.

Projektdurchführung – 2.Teil

- Auf Basis der erarbeiteten Messkonzeption waren in ausgewählten Behältern (Fermenter, Nachgärern und Gärrestelager) an mind. 8 Biogasanlagen die H₂S Gehalte zu ermitteln.
- Die H₂S-Gehalte waren unter Beachtung von: Temperatur und Gasfeuchte, Art des Entschwefelungsverfahrens und Art der Substrate und der Substratzusammensetzung zu ermitteln
- I Die entsprechenden messtechnischen Randbedingungen waren darzustellen
- Es war ein sicherheitstechnisches Konzept hinsichtlich des Explosionsschutzes vorzulegen
- I Öffentliche Ausschreibung Zuschlag DBFZ
- Messungen wurden 2015 2017 an 8 Biogasanlagen zu unterschiedlichen Jahreszeiten und Betriebszuständen durchgeführt

Projektergebnisse Überblick - Untersuchte Anlagen (Folien Torsten Reinelt DBFZ)

	BGA 1	BGA 2	BGA 3	BGA 4			
Gasdichte Behälter	3x gasdichter Behälter mit Stützluft-Doppelmembran- dach (1x Hauptfermenter, 2x Nachgärer) 1x gasdichter Behälter mit Einfachfoliedach (gasdicht abgedecktes Gärrestlager)	1x gasdichter Behälter mit Stützluft-Doppelmembran- dach (1x Hauptfermenter)	1x gasdichter Behälter mit Edelstahl Festdach (1x Hauptfermenter) 1x gasdichter Behälter mit Stützluft-Doppelmembran- dach (1x Nachgärer)	2x gasdichter Behälter mit Stützluft-Doppelmembran- dach (1x Hauptfermenter, 1x Nachgärer)			
Probenahmestellen an	Über-/Unterdrucksicherung, Gasleitung	Über-/Unterdrucksicherung	Gasleitung	Über-/Unterdrucksicherung, Gasleitung			
Vergärungsart		Nassve	ergärung				
Gärrestaufbereitung		ke	ine				
Gärrestlagerung	Offen; gasdicht abgedeckt		Offen				
Substrate	58 % Wirtschaftsdünger 42 % NawaRo	73 % Wirtschaftsdünger, 27 % NawaRo	78 % Wirtschaftsdünger, 22 % NawaRo	85 % Wirtschaftsdünger, 15 % NawaRo			
Interne bio. Entschwefelung	X	X	x (in der ersten Messphase außer Funktion)*				
Externe bio. Entschwefelung			Х				
Interne chemische Entschwefelung	х						
Aktivkohlefilter vor BHKW	x	X		х			
Störfallanlage	х						

^{7 | 29.} November 2023 | Torsten Moczigemba

Projektergebnisse Überblick - Untersuchte Anlagen (Folien Torsten Reinelt DBFZ)

	BGA 5	BGA 6	BGA 7	BGA 8
Gasdichte Behälter	2x gasdichter Behälter mit Stützluft- Doppelmembran-dach (1x Hauptfermenter, 1x Gärrestlager)	2x gasdichter Behälter mit Stützluft- Doppelmembran-dach (2x Gärrestlager)	4x gasdichter Behälter mit Stützluft- Doppelmembran-dach (1x Hauptfermenter, 1x Nachgärer, 2x Gärrest-lager)	4x gasdichter Behälter mit Stützluft- Doppelmembran-dach (1x Hauptfermenter, 1x Nachgärer, 2x Gärrest-lager)
Probenahmestellen an	Über-/Unterdrucksicherung	Über-/Unterdrucksicherung	Über-/Unterdrucksicherung	Über-/Unterdrucksicherung
Vergärungsart	Nassvergärung	Trockenvergärung	Nassvergärung	
Gärrestaufbereitung	keine	Fest-Flüssig-Trennung	keine	
Gärrestlagerung		Gasdicht a	abgedeckt	
Substrate	50 % Wirtschaftsdünger 50 % NawaRo	90 % Bioabfall, 8 % Grün-schnitt, 2 % Spelzen	84 % Wirtschaftsdünger, 16 % NawaRo	51 % Wirtschaftsdünger, 49 % NawaRo
Interne bio. Entschwefelung	X		X	X
Externe bio. Entschwefelung		X		
Interne chemische Entschwefelung	X	X	X	
Aktivkohlefilter vor BHKW	Х		X	
Störfallanlage			x	x

Projektergebnisse

			BGA 1		BGA 2	BGA 3*	ВС	A 4*	ВС	A 5	ВО	6A 6	BGA 7				В	GA 8		
	F	NG 1	NG 2	GRL	F/NG	NG	F	NG	F	GRL	GRL 1	GRL 2	F	NG	GRL 1	GRL 2	F	NG	GRL 1	GRL 2
Mittelwert H ₂ S in ppm	89	50	48	20	66	1.339	50	48	41	12	688	678	214	229	16	0	11	0	0	0
Standardabw. H₂S in ppm	71	41	50	45	20	759	28	27	67	30	315	330	80	64		0	10	0	0	0
Minimum H ₂ S in ppm	15	4	0	0	43	598	10	0	0	0	196	205	129	158	16	0	1	0	0	0
Maximum H₂S in ppm	208	110	101	100	83	2.114	81	66	141	74	1.063	1.095	288	284	16	0	23	0	0	0
n	5	5	5	3	3	3	3	3	4	4	8	8	3	3	1	2	4	4	4	4
Vergärungsart			Nassvergärung Trockenverg. Nassvergärung				Trockenverg. Nassvergärun													
Gärrestaufbereitung					ke	ine						-lüssig- aration								
Gärrestlagerung		Offen; (gasdicht al	bgedeckt		Offen						G	asdicht al	ogedeckt						
Substrate	58 % W 42 % Na	irtschaftsd awaRo	dünger		73 % Wirtschaftsdünge r, 27 % NawaRo	78 % Wirtschaftsdünge r, 22 % NawaRo	85 % Wirtschaft 15 % Naw	_	50 % Wirtschafts 50 % Nawa		90 % Bioa Grünschni Spelzen		84 % W 16 % Na	irtschaftsd awaRo	ünger		W		aftsdünç awaRo	jer
Interne biolog. Entschwefelung (Lufteinblasung)	х				х	x (in der ersten Me Funktion)*	essphase au	ıßer	x				Х				X			
Externe biologische Entschwefelung						Х					x									
Chemische Entschwefelung durch Eisenhydroxid	х										x									
Aktivkohlefilter vor BHKW	х				х		х		Х		x									
Störfallanlage	х												х				Х			

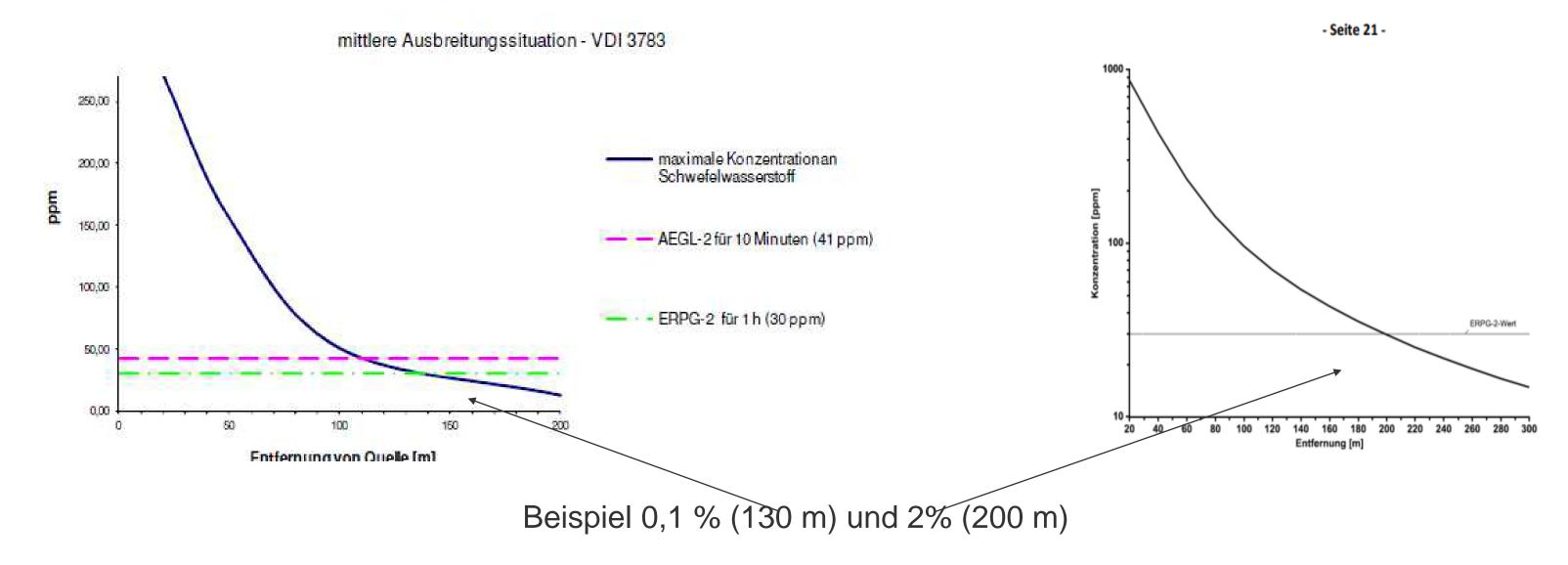
Projektergebnisse

Ermittlung einer zu erwartenden H₂S-Maximalkonzentration in Gasspeichern im Normalbetrieb mit funktionierender, interner Entschwefelung

	BGA 1			BGA 2	BGA 4	В	GA 5	BGA 7				BGA 8				
	F	NG 1	NG 2	GRL	F/NG	NG	F	GRL	F	NG	GRL 1	GRL 2	F	NG	GRL 1	GRL 2
Maximum H₂S in ppm	208	110	101	100	83	66	141	74	288	284	16	0	23	0	0	0
						Mittelwert:	93									
					Standa	rdabweichung:	96									
	Mittelwert + Standardabweichung:															
	(Mittelwert + Standardabweichung) * Sicherheitsfaktor 2:								det)							

https://publikationen.sachsen.de/bdb/artikel/29554

Projektergebnisse


Ermittlung einer zu erwartenden H₂S-Maximalkonzentration in Gasspeichern ohne installierte bzw. nicht voll funktionsfähige, interne Entschwefelung

	BGA 4	BGA 3	BG	6A 6			
	F	NG	GRL 1	GRL 2			
Maximum H₂S in ppm	578	2.927	1.063	1.095			
		Mittelwert:	877				
		Standardabweichung:	1.394				
		2.271					
	(Mittelwert + Stan	dardabweichung) * Sicherheitsfaktor 2:	4.542 ≈ 4.600 (aufgerundet)				

LANDESAMT FÜR UMWELT, LANDWIRTSCHAFT UND GEOLOGIE

Anwendung in der Praxis

- Biogasanlagen können jetzt auf aktuelle Werte bei der Ermittlung des angemessenen Sicherheitsabstandes im Sinne von § 3 Abs. 5a BlmSchG zurückgreifen.
- I Die Ermittlung erfolgt in der Regel über Rechenprogramme (PRONUS, DISMA, ADAM,...)
 - Kann für die Genehmigungsfähigkeit entscheidend sein!

Vielen Dank für Ihre Aufmerksamkeit!

Noch Fragen?

Dipl.-Ing. Torsten Moczigemba Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie Postfach 54 01 37 01311 Dresden Tel.: 0351 2612 5208 Email: Torsten.Moczigemba@smul.sachsen.de