Monitoring zur Wirkung des Erneuerbare-Energien-Gesetz (EEG) auf die Entwicklung der Stromerzeugung aus Biomasse

Kurztitel: Stromerzeugung aus Biomasse

(FZK: 03MAP138)

Zwischenbericht

März 2011

In Kooperation mit
Zuwendungsgeber: Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU)
Referat KI III 2
Alexanderstraße 3
10178 Berlin

Projektträger: Projektträger Jülich (PtJ)
Geschäftsbereich Umwelt (UMW)
Forschungszentrum Jülich GmbH
Zimmerstr. 26-27
10969 Berlin

Ansprechpartner: Deutsches BiomasseForschungszentrum gemeinnützige GmbH
Torgauer Straße 116
04347 Leipzig
Tel.: +49-341-2434-112
Fax: +49-341-2434-133
Internet: www.dbfz.de

Verantwortliche Bearbeiter:
- Janet Witt
- Nadja Rensberg
- Christiane Hennig
- Karin Naumann
- Andre Schwenker
- Martin Zeymer
- Eric Billig
- Alexander Krautz
- Jaqueline Daniel-Gromke
- Dr. Daniela Thrän

TLL:
- Annika Hilse
- Armin Vetter
- Dr. Gerd Reinhold

Kooperationspartner: Thüringer Landesanstalt für Landwirtschaft (TLL)
Naumburger Straße 98
07743 Jena
Tel.: +49-3641-683-0
Fax: +49-3641-683-390
E-Mail: postmaster@tll.thueringen.de
Internet: www.tll.de

Kontakt per E-Mail: biomasennutzung@dbfz.de
Erstelldatum: 31.03.2011
Projektnummer DBFZ: 3330002
Inhalt

1 **Einleitung** ... 6

2 **Anlagen zur Nutzung biogener Festbrennstoffe** ... 8
 2.1 Stand der Nutzung ... 8
 2.1.1 Entwicklung des Anlagenbestandes ... 9
 2.1.2 Regionale Verteilung .. 11
 2.1.3 Anwendungsbereiche, Betreiber- und Organisationsstruktur ... 17
 2.2 Strom- und Wärmeerzeugung ... 19
 2.3 Technologien und Verfahren .. 20
 2.4 Biomasseeinsatz ... 23
 2.4.1 Eingesetzte Stoffströme ... 23
 2.4.2 Markt- und Preisentwicklung .. 26
 2.5 Thermochemische Vergasung ... 30
 2.5.1 Entwicklung des Anlagenbestandes ... 30
 2.5.2 Akteursstruktur ... 31
 2.5.3 Stand der Technik .. 33
 2.5.4 Ausblick ... 33
 2.6 Papier- und Zellstoffindustrie ... 34

3 **Anlagen zur Nutzung gasförmiger Bioenergieträger** ... 36
 3.1 Stand der Nutzung ... 36
 3.1.1 Entwicklung Anlagenbestand .. 36
 3.1.2 Regionale Verteilung .. 38
 3.1.3 Anwendungsbereiche - Auswertung der Biogasanlagenbetreiberumfrage 45
 3.2 Strom- und Wärmeerzeugung ... 57
 3.2.1 Stromerzeugung ... 57
 3.2.2 Wärmeerzeugung ... 61
 3.3 Technologien und Verfahren .. 65
 3.3.1 Ausgewählte Parameter – Ergebnisse Betreiberbefragung ... 66
 3.3.2 Biogasaufbereitung und -einspeisung .. 73
 3.4 Biomasseeinsatz ... 74
 3.4.1 Eingesetzte Stoffströme ... 74
 3.4.2 Flächennutzung zur Biogaserzeugung ... 79
 3.4.3 Markt- und Preisentwicklungen ... 79

4 **Anlagen zur Nutzung flüssiger Bioenergieträger** .. 80
 4.1 Entwicklung des Anlagenbestandes ... 80
 4.2 Brennstoffeinsatz ... 82
 4.2.1 Preisentwicklung Pflanzenöl .. 83
 4.2.2 Auswirkungen der BioSt-NachV ... 84
 4.3 Auswertung der Befragung .. 85

5 **Effekte Landwirtschaft und Landschaftspflege** ... 89
Inhalt

5.1 Einleitung
5.1.1 Hintergrund und Zielstellung ... 89
5.1.2 Vorgehensweise ... 89

5.2 Energiepflanzenanbau in Deutschland .. 90
5.2.1 Flächeneinsatz für die Biogaserzeugung ... 90
5.2.2 Substrateinsatz und Anbaufläche .. 91
5.2.3 Regionale Unterschiede bei der Substratbereitstellung 92
5.2.4 Transportentfernung der Substrate für die Biogaserzeugung 93
5.2.5 Verwertung und Aufbereitung von Gärresten ... 95

5.3 Häufigkeitsverteilung des Substrateinsatzes .. 96
5.3.1 Einsatzhäufigkeiten in der Substratgruppe nachwachsende Rohstoffe 96
5.3.2 Einsatzhäufigkeiten in der Substratgruppe Wirtschaftsdünger 98
5.3.3 Landwirtschaft und Biomethaneinspeisung ... 99
5.3.4 Substratkosten ... 100

5.4 Grünland .. 103
5.4.1 Entwicklung von Dauergrünland in Deutschland 103
5.4.2 Grünlandnutzung für Biogasanlagen ... 105

5.5 Politische Handlungsnotwendigkeit für Grünlandflächen 107
5.5.1 Landschaftspflegeflächen und Biotopflächen ... 107

5.6 Gesamtbewertung und Schlussfolgerungen .. 108

6 Zusammenfassung ... 111

Abbildungsverzeichnis .. 116

Tabellenverzeichnis ... 119

Literaturverzeichnis .. 121
Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Erklärung</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>Arbeitsgruppe</td>
</tr>
<tr>
<td>AMI</td>
<td>Agrarmarkt Informations-Gesellschaft mbH</td>
</tr>
<tr>
<td>AWS</td>
<td>Anwelksilage</td>
</tr>
<tr>
<td>Bau-GB</td>
<td>Baugesetzbuch</td>
</tr>
<tr>
<td>BAV</td>
<td>Bundesverbands für Altholzaufbereiter und –verwerter</td>
</tr>
<tr>
<td>BG</td>
<td>Biogasanlagen</td>
</tr>
<tr>
<td>BGA</td>
<td>Biogasanlage</td>
</tr>
<tr>
<td>BHKW</td>
<td>Blockheizkraftwerk</td>
</tr>
<tr>
<td>BlmSchG</td>
<td>Bundes-Immissionsschutzgesetz</td>
</tr>
<tr>
<td>BlmSchV</td>
<td>Bundes-Immissionsschutzverordnung</td>
</tr>
<tr>
<td>BioSt-Nach</td>
<td>Biomassestrom-Nachhaltigkeitsverordnung</td>
</tr>
<tr>
<td>BL</td>
<td>Bundesland</td>
</tr>
<tr>
<td>BLE</td>
<td>Bundesanstalt für Landwirtschaft und Ernährung</td>
</tr>
<tr>
<td>C.A.R.M.E.N. e.V.</td>
<td>Centrales Agrar-Rohstoff-Marketing- und Entwicklungs-Netzwerk e.V.</td>
</tr>
<tr>
<td>CCM</td>
<td>Corn-Cob-Mix</td>
</tr>
<tr>
<td>DWA</td>
<td>Druckwechseladsorption</td>
</tr>
<tr>
<td>DWW</td>
<td>Druckwasserwäsche</td>
</tr>
<tr>
<td>EEG</td>
<td>Erneuerbare Energien Gesetz</td>
</tr>
<tr>
<td>EPF</td>
<td>European Panel Federation</td>
</tr>
<tr>
<td>EUWID</td>
<td>Europäischer Wirtschaftsdienst</td>
</tr>
<tr>
<td>EVU</td>
<td>Energieversorgungsunternehmen</td>
</tr>
<tr>
<td>FB</td>
<td>Festbrennstoffanlagen</td>
</tr>
<tr>
<td>FEE e.V.</td>
<td>Förderverein Erneuerbarer Energien</td>
</tr>
<tr>
<td>GG</td>
<td>Grundgesamtheit</td>
</tr>
<tr>
<td>GL</td>
<td>Grünland</td>
</tr>
<tr>
<td>GPS</td>
<td>Ganzpflanzensilage</td>
</tr>
<tr>
<td>GV</td>
<td>Großvieheinheiten</td>
</tr>
<tr>
<td>ha</td>
<td>Hektar</td>
</tr>
<tr>
<td>haLF</td>
<td>Hektar landwirtschaftliche Nutzfläche</td>
</tr>
<tr>
<td>HTK</td>
<td>Hühnertrockenkot</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>inst. elek.</td>
<td>installierte elektrische</td>
</tr>
<tr>
<td>InVeKos</td>
<td>Integriertes Verwaltungs- und Kontrollsystem</td>
</tr>
<tr>
<td>ISCC</td>
<td>International Sustainability & Carbon Certification</td>
</tr>
<tr>
<td>kW<sub>el</sub></td>
<td>Kilowatt elektrisch</td>
</tr>
<tr>
<td>KWK</td>
<td>Kraft-Wärme-Kopplung</td>
</tr>
<tr>
<td>LKS</td>
<td>Lieschkelbenschrot</td>
</tr>
<tr>
<td>MS</td>
<td>Maisilage</td>
</tr>
<tr>
<td>MW<sub>el</sub></td>
<td>Megawatt elektrisch</td>
</tr>
<tr>
<td>NawaRo</td>
<td>Nachwachsende Rohstoffe</td>
</tr>
<tr>
<td>nREAP</td>
<td>national Renewable Energy Action Plan</td>
</tr>
<tr>
<td>ORC</td>
<td>Organic Rankine Cycle</td>
</tr>
<tr>
<td>oTS</td>
<td>organische Trockensubstanz</td>
</tr>
<tr>
<td>PF</td>
<td>Pflanzenölanlagen</td>
</tr>
<tr>
<td>PÖL</td>
<td>Pflanzenöl</td>
</tr>
<tr>
<td>R+S</td>
<td>Rind und Schwein</td>
</tr>
<tr>
<td>REDcert</td>
<td>Renewable Energy Directive certification</td>
</tr>
<tr>
<td>TA</td>
<td>Technische Anleitung</td>
</tr>
<tr>
<td>t<sub>atro</sub></td>
<td>Tonne Trockenmasse</td>
</tr>
<tr>
<td>TS</td>
<td>Trockensubstanz</td>
</tr>
<tr>
<td>TWh<sub>el</sub></td>
<td>Terrawattstunden elektrisch</td>
</tr>
<tr>
<td>TWh<sub>th</sub></td>
<td>Terrawattstunden thermisch</td>
</tr>
<tr>
<td>UVP</td>
<td>Umweltverträglichkeitsprüfung</td>
</tr>
<tr>
<td>VDI</td>
<td>Verein Deutscher Ingenieure</td>
</tr>
<tr>
<td>VHI</td>
<td>Verband der deutschen Holzwerkstoffindustrie</td>
</tr>
<tr>
<td>WD</td>
<td>Wirtschaftsdünger</td>
</tr>
</tbody>
</table>
Einleitung

1 Einleitung

Das Forschungsvorhaben „Monitoring zur Wirkung des Erneuerbare-Energien-Gesetzes (EEG) auf die Entwicklung der Stromerzeugung aus Biomasse“ untersucht und dokumentiert für den Zeitraum 2008-2011 die Entwicklung des Marktes. Ähnlich wie die Vorläufersprojekte\(^2\) ist die Zielstellung des aktuellen Vorhabens, Fragestellungen hinsichtlich der Wirkung des neuen Erneuerbare-Energien-Gesetzes (EEG) auf die Entwicklung der Stromerzeugung aus Biomasse fürtührend zu analysieren und zu bewerten.

1 Feste und flüssige Biomasse, Biogas, biogener Abfall und Klär-und Deponiegas
In dem hier vorliegenden fünften Zwischenbericht werden folgende Fragestellungen betrachtet:

- Wie hat sich die Struktur des Bioenergieanlagenbestandes (feste Biomasse, Biogas, Pflanzenöl) im Laufe des Jahres 2010 entwickelt und welche Veränderungen sind gegenüber dem Stand des Jahres 2009 erkennbar (u. a. bezüglich der Anlagenanzahl, installierten elektrischen Leistung, Einsatzstoffe)?
- Wie hat sich die Inanspruchnahme der verschiedenen Boni in Verbindung mit der neuen Vergütungsstruktur des EEG 2009 entwickelt? Setzen z. B. neu geplante Anlagen nun tendenziell mehr Gülle ein?
- Wie hat sich die Nutzung der thermochemischen Vergasung von Holz zur Wärme- und Stromerzeugung entwickelt?

Darüber hinaus werden die Daten der Betreiberumfragen für Biogasanlagen, Pflanzenöl-BHKWs sowie Biomasse(heiz)kraftwerke ausgewertet und die wesentlichen Ergebnisse dargestellt.
2 Anlagen zur Nutzung biogener Festbrennstoffe

2.1 Stand der Nutzung

Anlagen zur thermochemischen Vergasung von fester Biomasse werden an dieser Stelle erstmals separat betrachtet und ausgewertet (siehe 2.5). Der Markt befindet sich seit Jahren in einer Phase stetiger Entwicklung, der vor allem in den letzten zwei Jahren von Umwälzungen und vereinzelten Entwicklungsprungläufen geprägt war. So hat sich der Bestand an Anlagen im Leistungsbereich bis rund 1 000 kWel in den letzten beiden Jahren fast verdoppelt. Hierbei handelt es sich um Anlagen, die von Herstellern an Kunden übergeben worden sind. Diese Entwicklung lässt jedoch zunächst offen, wie stabil diese Anlagen schließlich laufen.

Biogene Festbrennstoffe werden außer in Mono-Verbrennungsanlagen auch zur Substitution von fossilen Brennstoffen oder als additiver Brennstoff in Anlagen, die Ersatzbrennstoffe oder Abfallverbrennungen, eingesetzt. Diese (Heiz-)Kraftwerke werden nachfolgend nicht mit berücksichtigt, da der in vergleichbaren Anlagen erzeugte Strom derzeit keinen Anspruch auf eine EEG-Vergütung hat.
2.1.1 Entwicklung des Anlagenbestandes

Der aktuelle Anlagenbestand aller in Betrieb befindlichen, für eine Vergütung nach EEG in Frage kommenden Biomasse(heiz)kraftwerke ist in Abb. 2-1 dargestellt. Es handelt sich dabei um 249 Anlagen, die nach derzeitigem Kenntnisstand bis Ende 2010 mit einer elektrischen Leistung von rund 1 236 MW\textsubscript{el} installiert wurden. Damit hat sich seit Inkrafttreten des EEG im Jahr 2000 die Zahl der Biomasseverstromungsanlagen annähernd verfünffacht. Im gleichen Zeitraum ist dabei die Höhe der installierten elektrischen Leistung um mehr als das Zehnfache angestiegen.

![Diagramm zur Entwicklung des Anlagenbestandes](image)

Abb. 2-1: Anlagenbestand & installierte elektrische Leistung der in Betrieb befindlichen Biomasse(heiz)kraftwerke (Stand Ende 2010 – ohne Papier-/ Zellstoffindustrie, ohne Kleinst-KWK-Anlagen < 10 kWe und ohne Holzvergaser)

Voraussicht nicht erreicht werden. Dafür hat sich vor allem in den letzten zwei Jahren die Situation auf dem Brennstoffmarkt zu stark zugeschoben. Wie sich dieser Markt in Zukunft bewegen wird und welche Auswirkungen das auf die derzeitigen Planungen hat, bleibt abzuwarten.

Die Inbetriebnahmezeitpunkte der 2010er Anlagen lagen wie im Vorjahr schwerpunktmäßig im ersten und letzten Quartal des Jahres. Die Inbetriebnahmen 2010 erreichen somit 38 % (Anlagenanzahl) bzw. 19 % (installierte elektrische Leistung) der Vorjahreswerte.

Die durchschnittliche installierte Leistung des Anlagenzubaus im Vergleich zum Vorjahr reduzierte sich in 2010 auf 1,8 MWel (2009: 3,6 MWel). Damit sank die durchschnittliche installierte elektrische Leistung des Anlagenbestandes in 2010 leicht von 5,2 auf rund 5,0 MWel. Die sinkende Anlagengröße im Zubau ist die Fortführung des Trends der letzten Jahre. Aufgrund gesättigter Märkte, steigender Brennstoffpreise und der vorgegebenen Rahmenbedingungen des EEG konzentriert sich die Bestandsentwicklung auf Anlagen im kleinen und mittleren Leistungsbereich. Von den zugebauten Anlagen in 2010 sind sechs Anlagen im Leistungsbereich kleiner 1 MWel (insgesamt 2,3 MWel), die übrigen acht Anlagen in dem Leistungsbereich zwischen 1 und 10 MWel (22,6 MWel) einzuordnen.

Abb. 2-2 zeigt, dass mittlerweile über 53 % der installierten Leistung durch rund 16 % der Anlagen des Leistungsbereiches > 10 MWel (39 Anlagen) bereitgestellt wird. Dagegen stellen Anlagen im Leistungsbereich > 1-5 MWel bei 36,5 % der Anlagenzahl nur 17,2 % der Anlagenleistung. Im Leistungsbereich < 0,15 MWel gibt es nach derzeitiger Einschätzung keine Stromerzeugungstechnologien, die sich am Markt im größeren Umfang etablieren konnten. Trotz möglicher Anreize durch den Technologie-Bonus und höherer Grundvergütung des EEG hat diese Größenklasse nur einen geringen Anteil an der Anlagenzahl bzw. einen nicht nennenswerten Anteil an der Stromerzeugung.
Abb. 2-2: Aufteilung der Biomasse(heiz)kraftwerke nach Anlagenanzahl (links) und Anlagenleistung (rechts)

2.1.2 Regionale Verteilung
Die regionale Verteilung der hier betrachteten Anlagen in Deutschland wird in den folgenden Tabellen und Darstellungen abgebildet.
Tabelle 2-1: Regionale Verteilung der Biomasse(heiz)kraftwerke

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Anlagenanzahl</th>
<th>Inst. elektrische Leistung</th>
<th>Durchschnittl. Inst. elektrische Leistung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>35</td>
<td>128,3</td>
<td>3,7</td>
</tr>
<tr>
<td>Bayern</td>
<td>59</td>
<td>189,7</td>
<td>3,2</td>
</tr>
<tr>
<td>Berlin</td>
<td>1</td>
<td>20,0</td>
<td>20,0</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>22</td>
<td>168,0</td>
<td>7,6</td>
</tr>
<tr>
<td>Bremen</td>
<td>0</td>
<td>0,0</td>
<td>-</td>
</tr>
<tr>
<td>Hamburg</td>
<td>2</td>
<td>21,7</td>
<td>10,9</td>
</tr>
<tr>
<td>Hessen</td>
<td>14</td>
<td>70,6</td>
<td>5,0</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>10</td>
<td>52,4</td>
<td>5,2</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>14</td>
<td>122,1</td>
<td>8,7</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>28</td>
<td>188,4</td>
<td>6,7</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>19</td>
<td>70,7</td>
<td>3,7</td>
</tr>
<tr>
<td>Saarland</td>
<td>2</td>
<td>4,2</td>
<td>2,1</td>
</tr>
<tr>
<td>Sachsen</td>
<td>14</td>
<td>81,3</td>
<td>5,8</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>11</td>
<td>39,2</td>
<td>3,6</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>6</td>
<td>11,5</td>
<td>1,9</td>
</tr>
<tr>
<td>Thüringen</td>
<td>12</td>
<td>68,5</td>
<td>5,7</td>
</tr>
<tr>
<td>Gesamt</td>
<td>249</td>
<td>1 236</td>
<td>5,0</td>
</tr>
</tbody>
</table>

Der Schwerpunkt der installierten elektrischen Anlagenleistung liegt weiterhin in Bayern (15,3 %), gefolgt von Nordrhein-Westfalen (15,2 %). Brandenburg liegt mit 13,6 % erneut vor Baden-Württemberg (10,4 %). Bei der Anzahl der in Betrieb befindlichen Anlagen ist Bayern mit 23,7 % Spitzenreiter, gefolgt von Baden-Württemberg (14,1 %) und Nordrhein-Westfalen (11,2 %). Die in Relation zur Anlagenzahl höhere Gesamtleistung in Nordrhein-Westfalen gegenüber Baden-Württemberg ist auf die vergleichsweise große Anzahl an Anlagen im höheren Leistungsbereich zurückzuführen. Dieser Punkt spiegelt sich in der durchschnittlich installierten Leistung des Bundeslandes wider, die in Abb. 2-3 dargestellt ist.

Der Anlagenzubau fällt im Vergleich zum Vorjahr eher moderat aus. Es sind 14 Anlagen mit rund 25 MW_e bekannt, die im Jahr 2010 zugebaut wurden. Der Zubau (Anlagenzahl) liegt in Bayern bei 5, in Baden-Württemberg 3 und Niedersachsen bei jeweils 3 Anlagen gefolgt von Hessen, Sachsen und
Schleswig-Holstein mit je einer Anlage. Bezüglich der zugebauten Leistung ergibt sich eine andere Reihenfolge. Hier beginnt Niedersachsen (11,7 MW$_{el}$), gefolgt von Sachsen (5,6 MW$_{el}$) und Bayern (4,2 MW$_{el}$), Baden-Württemberg (2 MW$_{el}$), Hessen (1,4 MW$_{el}$) und Schleswig-Holstein (0,07 MW$_{el}$). In den übrigen Bundesländern fand kein Anlagenzubau statt. Abb. 2-4 verdeutlicht diesen Sachverhalt.

Abb. 2-3: Regionale Verteilung von Anlagenbestand und install. elektr. Leistung
Anlagen zur Nutzung biogener Festbrennstoffe

Abb. 2-4: Regionale Verteilung von Anlagenzubau und install. elektr. Leistung für das Jahr 2010

Tabelle 2-2: Abschätzung des Anlagenzubaus 2010

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Anlagenanzahl [-]</th>
<th>Inst. elektrische Leistung [MWel]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>3</td>
<td>2,0</td>
</tr>
<tr>
<td>Bayern</td>
<td>5</td>
<td>4,2</td>
</tr>
<tr>
<td>Hessen</td>
<td>1</td>
<td>1,4</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>3</td>
<td>11,7</td>
</tr>
<tr>
<td>Sachsen</td>
<td>1</td>
<td>5,6</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>1</td>
<td>0,07</td>
</tr>
<tr>
<td>Gesamt</td>
<td>14</td>
<td>25</td>
</tr>
</tbody>
</table>

Anlagen zur Nutzung biogener Festbrennstoffe

Abb. 2-5: Standort, Leistungs- und Brennstoffklasse der Biomasse(heiz)kraftwerke in Deutschland (ohne Kleinst-KWK-Anlagen < 10 kWth und ohne Holzvergaser)
2.1.3 Anwendungsbereiche, Betreiber- und Organisationsstruktur

Angaben zur Betreiberstruktur der in Betrieb befindlichen Biomasse(heiz)kraftwerke können für 70 % der Anlagen gemacht werden (n=175, siehe Abb. 2-6). Ein Großteil dieser Anlagen (46,3 % der 175 Anlagen bzw. 44 % der installierten elektrischen Leistung) wird durch Unternehmen der holzbe- und -verarbeitenden Industrie betrieben. Zur holzbearbeitenden Industrie zählen dabei Säge-/Hobelwerke sowie Holzwerkstoffhersteller, zur holzverarbeitenden Industrie beispielsweise Hersteller von Möbeln, Holzpackmitteln, der Holzfertigbau und die sonstige Holzverarbeitung. Anlagenbetreiber von Pelletproduktionen mit eigenem Holzheizkraftwerk werden im Rahmen dieser Auswertung ebenfalls der Kategorie der Holzverarbeitung zugeordnet. In der Holzindustrie fallen je nach Betrieb eine Vielzahl an Reststoffen an, die zur betriebseigenen Energiegewinnung genutzt werden können. Solche Betriebe eignen sich aufgrund ihres hohen Wärmebedarfes für die (Schnitt-)Holztrocknung und andere Anwendungsbereiche, für Prozesswärme und Beheizung in Form von Warmwasser oder Dampf, sehr gut für die Energieversorgung durch innerbetrieblich anfallende Reststoffe.

2.2 Strom- und Wärmeerzeugung

Die potenzielle Brutto-Stromerzeugung wird, auf Basis des aktuellen Anlagenbestands sowie unter Berücksichtigung mittlerer Volllaststunden und der unterschiedlichen Inbetriebnahmezeitpunkte für das Jahr 2010 auf etwa 8,3 TWhel abgeschätzt3.

Generell wird in Biomasse(heiz)kraftwerken – neben dem ins öffentliche Netz eingespeisten Strom – auch Wärme in Form von Heißwasser oder Dampf bereitgestellt, die beispielsweise in vorhandene Wärmeleitungsnetze eingespeist oder für industrielle Dampfprozesse genutzt werden könnten. Insgesamt wird nur bei einem kleinen Teil der erfassten Anlagen (rund 5 %) des Biomasse(heiz)kraftwerkparks ausschließlich Strom erzeugt. Bei den meisten Biomasse(heiz)kraftwerken findet zumindest eine geringe Kraft-Wärme-Kopplung (KWK) für den Eigenbedarf statt.

3 Zur Berechnung der Stromerzeugung wurden folgende Volllaststunden angenommen: Anlagen im Leistungsbereich ≤ 0,15 MWel: 2 500 h/a; Anlagen im Leistungsbereich ≥ 0,15-1 MWel: 4 000 h/a; Anlagen im Leistungsbereich > 1-10 MWel: 6 000 h/a, Anlagen im Leistungsbereich > 10 MWel: 7 500 h/a.

Auf Basis durchschnittlicher Volllaststunden für die Wärmeauskopplung der in Betrieb befindlichen Anlagen, die aus den vorhandenen Angaben zur Wärmeauskopplung entwickelt wurden (n=101), wird die Wärmemenge für das Jahr 2010, die gekoppelt zur Stromproduktion erzeugt und als Nutzwärme abgegeben wurde, auf 14,1 TWh geschätzt\footnote{Zur Berechnung der Wärmeauskopplung wurden folgende Volllaststunden angenommen: Anlagen im Leistungsbereich $\leq 0,5 \text{ MW}_{el}$: 5 000 h/a; Anlagen im Leistungsbereich $0,5-5 \text{ MW}_{el}$: 6 500 h/a; Anlagen im Leistungsbereich $> 5 \text{ MW}_{el}$: 4 000 h/a}.\footnote{Organic Rankine Cycle}

2.3 Technologien und Verfahren

Ursprünglich für die Strombereitstellung aus Niedertemperaturwärme entwickelt, hat sich der ORC-Prozess vor allem in den letzten 4 Jahren (mit Unterstützung des Bonus für innovative Technologien) im Bereich der Biomasseheizkraftwerke zu einer wesentlichen Größe entwickelt. Nach derzeitigem Kenntnisstand befanden sich Ende 2010 bereits 79 ORC-Anlagen mit einer elektrischen Leistung zwischen 0,3 und 3,1 MW$_{el}$ (2 Module à 1,55 MW$_{el}$) in Betrieb.
Abb. 2-8: Zubau von ORC- und Dampfturbinenanlagen 2000 bis 2010

Trotz des enormen Zubaus und der Marktreife gibt es bei dem Betrieb von ORC-Heizkraftwerken noch Optimierungsbedarf. ORC-Anlagen weisen einen geringen elektrischen Wirkungsgrad auf, der bisher z. B. durch Modifikationen etwa im Silikonölkreislauf (Teilstromprinzip) erhöht werden konnte. Da den Bemühungen an dieser Stelle physikalische Grenzen gesetzt sind, wird eine Steigerung des

Im Kleinst-KWK-Bereich befindet sich seit Anfang 2011 ein wärmegeführter, mit Pellet betriebener Dampfkolbenmotor im Versuchsbetrieb. Hierbei handelt es sich um ein Konzept mit einem horizontal laufenden Dampfkolbenmotor, der seit 2006 als Erdgas-Variante vertrieben wird. Bei thermischen Leistungen von 3,5 bis 16 kW und elektrischen Leistungen von 0,3 bis 2 kW bei einem elektrischen Wirkungsgrad von rund 10 % handelt es sich um eine Kleinstanwendung, die derzeit in einem landwirtschaftlichen Betrieb in NRW getestet wird. Die Stromerzeugung dient der Deckung des Eigenbedarfs. In diesen Größenordnungen ist eine Einspeisung des Stroms nach EEG nicht zweckmäßig [8], [38].
2.4 Biomasseeinsatz

2.4.1 Eingesetzte Stoffströme

Abb. 2-9 verdeutlicht die in den Anlagen eingesetzten Holzsortimente. Es wird an dieser Stelle zwischen vier verschiedenen Sortimenten unterschieden. Naturbelassenes Holz bezeichnet Wald(rest)holz, unbelastetes Sägerestholz oder Rinde sowie Landschaftspflegeholz. Bezogen auf die Anlagenzahl setzen rund 54 % der Anlagen diesen Brennstoff ein. Bezogen auf die gesamte installierte elektrische Leistung ist dieser Wert geringer und beträgt 33,3 %. Im Vergleich zum Vorjahr sind die Anteile leicht angestiegen. Bei den Anlagen, die ausschließlich Altholzsortimente der Klassen A I und A II einsetzen, handelt es sich um 16,1 % des Anlagenbestandes bzw. 11,4 % der installierten elektrischen Leistung. Bei den Anlagen, die alle Altholzklassen (A I bis A IV) einsetzen dürfen, handelt es sich um 12,4 % (nach Anlagenzahl) bzw. 31,4 % (nach inst. elek. Leistung). Schließlich findet in einigen Anlagen auch eine Mischnutzung statt. Hier kommen sowohl Althölzer als auch naturbelassene Hölzer zum Einsatz. Es handelt sich um 17,7 % der Anlagen bzw. 23,9 % der installierten Leistung.

![Diagramm 2-9: Brennstoffeinsatz in Biomasse(heiz)kraftwerken nach Anlagenzahl (links) und inst. elek. Leistung (rechts)](image)

Abb. 2-9: Brennstoffeinsatz in Biomasse(heiz)kraftwerken nach Anlagenzahl (links) und inst. elek. Leistung (rechts)

Ermittelt man die Anteile der verschiedenen Holzfraktionen bezogen auf die in Betrieb befindlichen Biomasse(heiz)kraftwerke, so ergeben sich deutliche Unterschiede in den sechs Leistungsbereichen. Abb. 2-10 bis Abb. 2-13 verdeutlichen diesen Sachverhalt (aus Darstellungsgründen weisen die Diagramme unterschiedliche Skalierungen auf).
Abb. 2-10: Erwarteter Brennstoffeinsatz von naturbelassenem Holz

Abb. 2-11: Erwarteter Brennstoffeinsatz von Altholz bis AII
Anlagen zur Nutzung biogener Festbrennstoffe

Abb. 2-12: Erwarteter Brennstoffeinsatz von Altholz bis AIV

Abb. 2-13: Erwarteter Brennstoffeinsatz von Mischsortimenten

Den mengenmäßig bedeutsamsten Brennstoffeinsatz mit rund 2,5 Mio tatro (33,1 % der insgesamt eingesetzten Brennstoffe) haben Anlagen, die ausschließlich naturbelassenes Holz einsetzen (411 MW_{el}, rund 33 % der Anlagen). Aufgrund der hohen Anlagenleistungen verzeichnen die Größenklassen ab 1 MW_{el} den höchsten Brennstoffeinsatz in diesem Bereich. Ebenfalls mengenmäßig bedeutsam kommt
Altholz in Anlagen zum Einsatz, die nach 17. BImSchV für Althölzer bis AIV genehmigt sind. Die prognostizierte Menge für 2010 beträgt hier zusammen rund 2,3 Mio tatro (29,9 %). Hier überwiegt ganz klar die Größenklasse ab 10 MWel. Insgesamt kommen in 31,4 % der Anlagen (bezogen auf die inst. elek. Leistung von 388 MWel) ausschließlich Althölzer bis AIV zum Einsatz. Einen weiteren großen Anteil stellen die Anlagen, die neben naturbelassenem Holz auch unterschiedliche Altholzklassen einsetzen dürfen, dar. Hierbei handelt es sich um rund 23,9% der inst. elek. Leistung (296 MWel), die 24,3 % der eingesetzten Brennstoffe nutzen (1,9 Mio. tatro). Wie hoch die tatsächlichen Anteile der naturbelassenen Hölzer bzw. Althölzer in diesen Anlagen sind, kann derzeit nicht hinreichend genau abgeschätzt werden. Die verbleibende rund 1 Mio. tatro Brennstoff (12,7 %) wird den Althölzern der Klasse A I + II, die in entsprechenden Anlagen zum Einsatz kommen (11,4 %, 141 MWel), zugeordnet.

2.4.2 Markt- und Preisentwicklung
Nachfolgend wird ein kurzer Überblick der Preisentwicklung von Holzsortimenten gegeben, die für die hier betrachteten Biomasse(heiz)kraftwerke relevant sind. Die Daten beruhen zum einen auf quartalsweise publizierten Angaben der Europäischen Wirtschaftsdienst (EUWID) GmbH, zum anderen auf Marktbeobachtungen von C.A.R.M.E.N. e.V.

Abb. 2-14: Preisentwicklung der Durchschnittspreise von Altholzsortimenten [26]

Abb. 2-15: Preisentwicklung der Durchschnittspreise von Hackschnitzel aus Waldholz [20]
Der Markt für Holzsortimente aus der Landschaftspflege befindet sich weiterhin in der Entwicklung. Unter Landschaftspflegehölzern versteht man die gesamte Bandbreite an holzhaltiger Biomasse, die bei Pflegearbeiten im Rahmen landespflegerischer oder naturschutzfachlicher Maßnahmen, bei der Baumpflege sowie im Rahmen von Verkehrssicherungsmaßnahmen anfällt. Wie auch 2009 spielen Landschaftspflegeholzsortimente in 2010 bei Anlagenbetreibern eine immer größere Rolle, was auch auf die NawaRo-Bonusvergütung im EEG 2009 zurückzuführen ist. Der Hintergrund dieser Förderung ist, dass Landschaftspflegeholz ein hohes, bisher ungenutztes Potenzial besitzt und hierbei derzeit kaum Konkurrenz zu anderen holzartigen Rohstoffen besteht. Eine Ausnahme bilden hier Kompostieranlagen, die holzartiges Material als Strukturbildner für die Rottehaufen benötigen.

Neben regionalen Preisunterschieden spielt für die Brennstoffbeschaffung (Waldrestholz sowie Landschaftspflegeholz) vor allem die Anlagengröße eine Rolle. Betreiber kleiner Anlagen (Heizwerke, \(<1\text{ MW}_{th}\)) bezahlen vergleichsweise mehr für ihren Brennstoff als Betreiber von Großanlagen (Heiz(kraft)werke, \(>1\text{ MW}_{th}\)). Die Ursache hierfür liegt in den größeren Abnahmemengen und einer höheren Toleranz gegenüber minderwertigeren und somit günstigeren Hackschnitzelqualitäten durch Großanlagenbetreiber [24]. Abb. 2-16 stellt eine Übersicht von Ankaufpreisen für Hackschnitzel aus Waldholz und Landschaftspflegeholz in Abhängigkeit der Anlagengröße und des Zeitraumes dar. Bei den dargestellten Preisen handelt es sich um das gewichtete Mittel der Betreiberangaben (\(€/\text{t}_{\text{mto}}\) frei Verwerter) mit Angabe der Schwankungsbreiten. Zwischen den beiden dargestellten Quartalen ist eine leichte Preissteigerung bei den meisten Sortimenten erkennbar. Die sehr großen Schwankungsbreiten zeigen jedoch auch die hohe qualitative Varianz der vorhandenen Brennstoffe.
Abb. 2-16: Ankaufspreise für Verwerter von NawaRo-Holz [24], [25]

2.5 Thermochemische Vergasung

2.5.1 Entwicklung des Anlagenbestandes

Die Anzahl der Anlagen, die von Entwicklung, Herstellern oder Anbietern seit dem EEG in der Fassung von 2004 mit dem Ziel der Stromeinspeisung betrieben wurden, kann nach einer Evaluierung Anfang 2011 derzeit auf mindestens 84 eingegrenzt werden. Die damit verbundene installierte elektrische Leistung beträgt rund 6,7 MWel (Tabelle 2-3).

| Tabelle 2-3: Entwicklung des Anlagenbestandes von Holzvergasungsanlagen in Deutschland |
|-----------------|------------------|------------------|
| 12/2008 | 62 | 7,4 |
| 12/2009 | 73* | 7,1* |
| 12/2010 | 84 | 6,7 |

*geschätzter Mittelwert auf Basis der Daten von 12/2008 und 12/2010

Der wesentliche Anlagenzubau fand entgegen aller ökonomischen Erwartungen im kleinen Leistungsbereich < 1 MWel und dabei besonders im Leistungsfeld < 150 kWel statt. Die Entwicklungsarbeit im Bereich > 500 kWel stellte sich deutlich verhaltener dar. Die sich davon verfahrenstechnisch abhebenden drei Großanlagen in Senden, Herten und Geislingen (mit 3-5 MWel) befinden sich derzeit noch in Fertigstellung, in Bau oder kurz vor Baubeginn.

2.5.2 Akteursstruktur

Abb. 2-17 gibt eine Übersicht von 50 Anbietern von KWK-Systemen auf Basis der Biomassevergasung, die in Deutschland in den Jahren 2010/2011 die Entwicklung mitbestimmten.
Anlagen zur Nutzung biogener Festbrennstoffe

Abb. 2-17: Übersicht der in Deutschland aktiven Entwickler/Anbieter von Biomassevergasungssystemen

Ohne Anspruch auf Vollständigkeit. Akteure, die nicht genannt werden möchten, sind nicht in der Abbildung aufgeführt, die Flugstromvergasung des KIT ist nicht auf KWK gerichtet.
2.5.3 Stand der Technik

2.5.4 Ausblick

Im Allgemeinen handelt es sich bei der Holzvergasungs-KWK-Technik um eine sich herausbildende Branche, in der noch sehr viel auf Eigenentwicklung gesetzt wird. Hierdurch kamen zwar bisher viele parallel entwickelte Konzepte in Marktnähe, stehen aber bislang noch vor dem technologischen Durchbruch.

2.6 Papier- und Zellstoffindustrie

Die o.g. Daten zum Anlagenzubau und der inst. elek. Leistung berücksichtigen nicht die Anlagen der Papier- und Zellstoffindustrie. Sie werden an dieser Stelle separat betrachtet. In Deutschland gibt es derzeit 6 Anlagen in diesem Industriezweig, für die eine Stromerzeugung und Vergütung nach EEG in Frage kommt und spätestens mit Inkrafttreten der EEG-Novellierung 2009 auch praktiziert wird. Tabelle 2-4 gibt hierzu eine kurze Übersicht.

Tabelle 2-4: Übersicht der Biomasseheizkraftwerke der Papier- und Zellstoffindustrie

<table>
<thead>
<tr>
<th>Anlagenbetreiber</th>
<th>Nach EEG vergütete inst. elek. Leistung [MW_e]</th>
<th>EEG-Einspeisung seit</th>
<th>Einsatzstoffe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zellstoff Stendal GmbH</td>
<td>35-40</td>
<td>2009</td>
<td>Ablauge, Rinde</td>
</tr>
<tr>
<td>Zellstoff- und Papierfabrik Rosenthal GmbH</td>
<td>< 20</td>
<td>2009</td>
<td>Ablauge, Rinde</td>
</tr>
<tr>
<td>Sappi Alfeld GmbH</td>
<td>16,8</td>
<td>2003</td>
<td>Ablauge, Rinde</td>
</tr>
<tr>
<td>Sappi Ehingen GmbH</td>
<td>13,2</td>
<td>2000</td>
<td>Ablauge, Rinde</td>
</tr>
<tr>
<td>Sappi Stockstand GmbH</td>
<td>18,9</td>
<td>2003</td>
<td>Ablauge, Rinde</td>
</tr>
<tr>
<td>SCA Hygiene Products GmbH, Werk Mannheim</td>
<td>20</td>
<td>2003</td>
<td>Ablauge</td>
</tr>
</tbody>
</table>

Die installierte elektrische Nennleistung der Biomasseheizkraftwerke in der Papier- und Zellstoffindustrie, welche nach dem EEG vergütet werden, liegt zwischen 122 und rund 130 MWel. Daraus ergibt sich bei angenommenen Vollaststunden von etwa 8.000 h/a eine rechnerische Stromeinspeisung im Jahr 2009 von 975 bis rund 1 030 GWh.
3 Anlagen zur Nutzung gasförmiger Bioenergieträger

3.1 Stand der Nutzung

In der nachfolgenden Betrachtung zur Nutzung gasförmiger Bioenergieträger werden Deponie- und Klärgas nicht berücksichtigt und sind somit in den dargestellten Statistiken und Analysen nicht enthalten.

3.1.1 Entwicklung Anlagenbestand

Anlagen zur Nutzung gasförmiger Bioenergieträger

3.1.2 Regionale Verteilung

Eine möglichst vollständige Erfassung des Biogasanlagenbestandes wird über die kontinuierliche Aktualisierung der Datenbank sowie mit Unterstützung der Landesministerien, Genehmigungsbehörden und Experten der jeweiligen Bundesländer angestrebt.

Tabelle 3-1: Verteilung der in Betrieb befindlichen Biogasanlagen und der installierten elektrischen Anlagenleistung in Deutschland nach Bundesländern (Befragung der Länderinstitutionen 2011, Schätzungen DBFZ) [1],[33],[37],[42],[43],[44],[46],[48]

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Biogasanlagen in Betrieb (Anzahl)</th>
<th>inst. elek. Gesamtleistung (MWel)</th>
<th>mittlere inst. elek. Anlagenleistung (kWel)</th>
<th>Biogasanlagen-zubau 2010 (Anzahl / MWel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>709</td>
<td>202,8</td>
<td>286</td>
<td>97 / 41,1</td>
</tr>
<tr>
<td>Bayern</td>
<td>2 030</td>
<td>548,2</td>
<td>270</td>
<td>339 / 124,1</td>
</tr>
<tr>
<td>Berlin</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brandenburg*</td>
<td>190</td>
<td>120</td>
<td>632</td>
<td>14 / 8,0</td>
</tr>
<tr>
<td>Bremen</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hamburg</td>
<td>1</td>
<td>1</td>
<td>1 000</td>
<td>0 / 0</td>
</tr>
<tr>
<td>Hessen</td>
<td>100</td>
<td>37,0</td>
<td>370</td>
<td>5 / 3,0</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern***</td>
<td>270</td>
<td>145</td>
<td>537</td>
<td>55 / 28,1</td>
</tr>
<tr>
<td>Niedersachsen*</td>
<td>1 073</td>
<td>560,0</td>
<td>522</td>
<td>200 / 102,0</td>
</tr>
<tr>
<td>Nordrhein-Westfalen*</td>
<td>420</td>
<td>150,0</td>
<td>357</td>
<td>90 / 25,0</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>105</td>
<td>42,0</td>
<td>400</td>
<td>7 / 3,5</td>
</tr>
<tr>
<td>Saarland</td>
<td>9</td>
<td>3,5</td>
<td>414</td>
<td>0 / 0</td>
</tr>
<tr>
<td>Sachsen</td>
<td>189</td>
<td>81,7</td>
<td>432</td>
<td>22 / 16,9</td>
</tr>
<tr>
<td>Sachsen-Anhalt**</td>
<td>209</td>
<td>113,9</td>
<td>545</td>
<td>31 / k.A.</td>
</tr>
<tr>
<td>Schleswig-Holstein/***</td>
<td>380</td>
<td>152,0</td>
<td>400</td>
<td>105 / 27</td>
</tr>
<tr>
<td>Thüringen</td>
<td>174</td>
<td>83,4</td>
<td>479</td>
<td>34 / 12,5</td>
</tr>
<tr>
<td>Gesamt</td>
<td>5849</td>
<td>2241</td>
<td>383</td>
<td>910 / 411</td>
</tr>
</tbody>
</table>

* Schätzung (Angabe der Landesinstitution)
** Anlagen in Betrieb und Bau
*** Schätzung DBFZ (zu Redaktionsschluss keine Daten vorliegend)

Kapiteln vorgenommenen Auswertungen wird von einem Anlagenbestand von 5 900 Biogasanlagen mit einer installierten elektrischen Anlagenleistung von rund 2 300 MW_{el} ausgegangen.

Abb. 3-3: Installierte Biogasanlagenleistung je landwirtschaftliche Fläche, Bezugsbene: Bundesland, [56]
Die räumliche Verteilung der Biogasanlagen in Deutschland, entsprechend der Datenlage der Biogasdatenbank des DBFZ, ist in Abb. 3-4 dargestellt. In der Biogasdatenbank des DBFZ sind etwa 85 % des deutschen Biogasanlagenbestandes mit Angabe des Anlagenstandortes erfasst.

Abb. 3-4: Verteilung der in Betrieb befindlichen Biogasanlagen in Deutschland; Bezugsebene: Postleitzahl Stand 01/2011; Biogasdatenbank DBFZ) [1],[37],[42],[43],[46]

7 Dopplungen können aufgrund der unzureichenden Datenlage nicht vollkommen ausgeschlossen werden.
Anlagen zur Nutzung gasförmiger Bioenergieträger

Abb. 3-5: Anlagenzahl, gesamte und durchschnittliche elektrische Anlagenleistung in Deutschland zum Stand 12/2010, Bezugsbene: Landkreise; Biogasdatenbank DBFZ, [1],[37],[42],[43],[46]
Die installierte elektrische Anlagenleistung bezogen auf die landwirtschaftliche Nutzfläche der Landkreise zeigt Abb. 3-6. Dabei wird deutlich, dass vor allem in Süddeutschland und Niedersachsen sowie Schleswig-Holstein die installierte Leistung bezogen auf die landwirtschaftliche Nutzfläche am höchsten ist (> 100 kWel je 1 000haLF). Konzentrationen sind dabei in den Landkreisen Bayreuth und Ansbach (Bayern); Soltau-Fallingbostel, Cloppenburg und Celle (Niedersachsen) und Uecker-Randow in Mecklenburg-Vorpommern zu sehen. Zudem verzeichnen zahlreiche kreisfreie Städte eine hohe installierte elektrische Leistung bezogen auf die landwirtschaftliche Nutzfläche. Das ist vorrangig auf die geringe landwirtschaftliche Fläche in den Städten zurückzuführen und zeigt zugleich auf, dass diese Darstellung den Aspekt der Substrattransporte aus umliegenden Landkreisen zu den Biogasanlagen nicht abbilden kann.

Abb. 3-6: installierte elektrische Anlagenleistung bezogen auf 1 000 ha landwirtschaftliche Fläche, BezugsEbene: Landkreis

kapazitäten auf, wohingegen in Niedersachsen, Baden-Württemberg, Bayern und Nordrhein-Westfalen die Mehrzahl der Aufbereitungsanlagen steht. Eine Besonderheit stellt die sehr große Biogasaufbereitungsanlage in Mecklenburg-Vorpommern (Standort Güstrow) dar. In Kapitel 3.3.2 wird auf die Biogasaufbereitung und eingesetzten Technologien näher eingegangen.

Tabelle 3-2: Verteilung der in Betrieb, Bau/Planung befindlichen Biogasaufbereitungs- und Einspeiseanlagen und der installierten Aufbereitungskapazität in Deutschland nach Bundesländern

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Biogasaufbereitungsanlagen in Betrieb (Anzahl)</th>
<th>installierte Aufbereitungskapazität gesamt (Nm³ Biomethan/h)</th>
<th>mittlere Aufbereitungskapazität (Nm³ Biomethan/h)</th>
<th>Biogasaufbereitungsanlagen in Bau/Planung (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baden-Württemberg</td>
<td>8</td>
<td>3 040</td>
<td>380</td>
<td>4</td>
</tr>
<tr>
<td>Bayern</td>
<td>7</td>
<td>4 755</td>
<td>679</td>
<td>8</td>
</tr>
<tr>
<td>Berlin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>4</td>
<td>4 870</td>
<td>1 218</td>
<td>15</td>
</tr>
<tr>
<td>Bremen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hamburg</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Hessen</td>
<td>4</td>
<td>1 038</td>
<td>260</td>
<td>7</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>1</td>
<td>5 200</td>
<td>5 200</td>
<td>8</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>10</td>
<td>4 255</td>
<td>426</td>
<td>10</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>7</td>
<td>3 210</td>
<td>459</td>
<td>9</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Saarland</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Sachsen</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>5</td>
<td>6 755</td>
<td>1 351</td>
<td>9</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>1</td>
<td>410</td>
<td>410</td>
<td>1</td>
</tr>
<tr>
<td>Thüringen</td>
<td>1</td>
<td>345</td>
<td>345</td>
<td>2</td>
</tr>
<tr>
<td>Gesamt</td>
<td>48</td>
<td>33 878</td>
<td>706</td>
<td>86</td>
</tr>
</tbody>
</table>

Die Standorte der Biogasaufbereitungs- und -einspeisungsanlagen in Deutschland sind in Abb. 3-7 differenziert nach Betrieb, Bau und Planung dargestellt.
3.1.3 Anwendungsbereiche - Auswertung der Biogasanlagenbetreiberumfrage

Vorgehensweise und Statistik der Biogasanlagenbetreiberumfrage 2010

In Hinblick auf die Analyse und Bewertung des Anlagenbestandes in Deutschland wurde, wie in den Vorjahren, eine Betreiberbefragung durchgeführt. Ziel der Befragung ist, für eine möglichst große Anzahl von Biogasanlagen eine praxisnahe Erhebung durchzuführen, mit der repräsentative Daten zur Anlagentechnik, zum Substrateinsatz, zur Flächennutzung sowie Anlagenveränderungen und Problemfeldern erfasst werden. Im Rahmen dieser Befragung wurden im Dezember 2010 Fragebögen an rund 4 000 Biogasanlagenbetreiber versandt. Damit wurden insgesamt ca. 67 % des Biogasanlagenbestandes Ende 2010 in Deutschland in die Untersuchung einbezogen.

Die Betreiber wurden, analog zu den Betreiberbefragungen der Vorjahre, zu folgenden Aspekten befragt:

- Anlagengenehmigung, Bebauung nach §35 BauGB
- installierte elektrische Leistung
- Vergütung nach EEG inkl. Bonidifferenzierung
- erzeugte Strommenge, Eigenstrombedarf
- Betriebs- und Volllaststunden
- Art der Gasnutzung
Anlagen zur Nutzung gasförmiger Bioenergieträger

- elektrischer/thermischer Wirkungsgrad
- Gasfackel
- Wärmenutzungsgrad, Art der Wärmenutzung, Eigenwärmeverbrauch
- Verfahren
- Abdeckung der Gärrestlager
- Gärrestaufbereitung und -verwertung
- Abgasbehandlung, Entschwefelung
- Ausfallzeiten
- Substrateinsatz (Art, Menge, Kosten, durchschnittliche Transportentfernung)
- Veränderungen zum Gülleeinsatz
- Flächenumfang für den Anbau landwirtschaftlicher Rohstoffe zur Biogasproduktion

Aufgrund der seit 2005 jährlich durchgeführten Betreiberbefragungen für die Biogasanlagen und der fortwährenden Optimierung der Befragung konnte der Rücklauf der Befragung weiter verbessert werden. Während im Vorjahr für die Auswertung insgesamt 462 Fragebögen zur Verfügung standen, können in diesem Jahr insgesamt 696 Fragebögen in der Auswertung berücksichtigt werden. Dies entspricht knapp 12 % des Biogasanlagenbestandes Ende 2010 für eine Auswertung zur Verfügung. An dieser Stelle gilt den Betreibern der Biogasanlagen ein besonderer Dank für ihre freiwilligen Aufwendungen und die Unterstützung im Rahmen der Untersuchung.

Hohe Rückläufe wurden - unter Ausklammerung des Stadtstaaten Hamburg - vor allem in Hessen, Sachsen, Rheinland-Pfalz und Thüringen erzielt (> 15 % des Anlagenbestandes). Dagegen konnten in

Tabelle 3-3: Rücklauf Betreiberbefragung 2010/11 und Anteil am Anlagenbestand je Bundesland

<table>
<thead>
<tr>
<th>Bundesland</th>
<th>Rücklauf</th>
<th>Anlagenbestand (GG)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anzahl</td>
<td>Anteil am Rücklauf (%)</td>
<td>Anteil am Gesamtanlagenbestand Deutschland (%)</td>
<td>Anteil des Rücklaufs am Anlagenbestand BL (%)</td>
</tr>
<tr>
<td>Baden-Württemberg</td>
<td>82</td>
<td>11,8</td>
<td>12,1</td>
<td>11,6</td>
</tr>
<tr>
<td>Bayern</td>
<td>256</td>
<td>36,8</td>
<td>34,5</td>
<td>12,6</td>
</tr>
<tr>
<td>Berlin</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brandenburg</td>
<td>15</td>
<td>2,2</td>
<td>3,7</td>
<td>6,8</td>
</tr>
<tr>
<td>Bremen</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hamburg</td>
<td>1</td>
<td>0,1</td>
<td>0,02</td>
<td>100</td>
</tr>
<tr>
<td>Hessen</td>
<td>24</td>
<td>3,4</td>
<td>1,7</td>
<td>24,0</td>
</tr>
<tr>
<td>Mecklenburg-Vorpommern</td>
<td>19</td>
<td>2,7</td>
<td>4,6</td>
<td>7,0</td>
</tr>
<tr>
<td>Niedersachsen</td>
<td>111</td>
<td>15,9</td>
<td>18,3</td>
<td>10,3</td>
</tr>
<tr>
<td>Nordrhein-Westfalen</td>
<td>60</td>
<td>8,6</td>
<td>7,0</td>
<td>14,6</td>
</tr>
<tr>
<td>Rheinland-Pfalz</td>
<td>22</td>
<td>3,2</td>
<td>1,8</td>
<td>21,0</td>
</tr>
<tr>
<td>Saarland</td>
<td>1</td>
<td>0,1</td>
<td>0,2</td>
<td>11,1</td>
</tr>
<tr>
<td>Sachsen</td>
<td>37</td>
<td>5,3</td>
<td>3,2</td>
<td>19,6</td>
</tr>
<tr>
<td>Sachsen-Anhalt</td>
<td>10</td>
<td>1,4</td>
<td>3,6</td>
<td>4,8</td>
</tr>
<tr>
<td>Schleswig-Holstein</td>
<td>30</td>
<td>4,3</td>
<td>6,5</td>
<td>7,9</td>
</tr>
<tr>
<td>Thüringen</td>
<td>28</td>
<td>4,0</td>
<td>3,0</td>
<td>16,1</td>
</tr>
<tr>
<td>Gesamt</td>
<td>696</td>
<td>100</td>
<td>100</td>
<td>12,2</td>
</tr>
</tbody>
</table>

GG – Grundgesamtheit, BL - Bundesland

In Hinblick auf die Größenklassenverteilung der installierten Anlagenleistungen der Anlagen, die in die Auswertung eingehen, zeigt sich, dass die Anlagen der Größenklasse ≤ 70 kWel eher unterrepräsentiert sind, wohingegen die Größenklasse > 500 kWel etwas überrepräsentiert ist (Tabelle 3-4). Das ist vor
allem darauf zurückzuführen, dass die größeren Biogasanlagen in der Datenbank des DBFZ besser erfasst sind, als sehr kleine landwirtschaftliche Biogasanlagen. Die Anlagengrößenklassen zwischen 70 und 500 kWel – die den Großteil des Anlagenbestandes ausmachen – sind jedoch über die Betreiberbefragung entsprechend der realen Verteilung am Anlagenbestand repräsentativ verteilt. Für die größenklassenbezogene Auswertung der Betreiberbefragung sind diese Aspekte zu berücksichtigen.

Unter Berücksichtigung dieser Verteilung und des Rücklaufs bezogen auf die räumliche Verteilung der Biogasanlagen in Deutschland ist insgesamt von einer repräsentativen Verteilung der im Folgenden untersuchten Biogasanlagen auszugehen.

Tabelle 3-4: Rücklauf der Betreiberbefragung – Größenklassenverteilung und Anteil am Gesamtanlagenbestand

<table>
<thead>
<tr>
<th>Installierte elektr. Anlagenleistung (kWel)</th>
<th>Rücklauf (Anzahl)</th>
<th>Anteil am Rücklauf (%)</th>
<th>Anteil am Gesamtanlagenbestand* (GG) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 70</td>
<td>67</td>
<td>9,6</td>
<td>15</td>
</tr>
<tr>
<td>71 – 150</td>
<td>76</td>
<td>10,9</td>
<td>9,5</td>
</tr>
<tr>
<td>151 – 500</td>
<td>378</td>
<td>54,3</td>
<td>59,5</td>
</tr>
<tr>
<td>501 – 1 000</td>
<td>111</td>
<td>15,9</td>
<td>12,2</td>
</tr>
<tr>
<td>> 1 000</td>
<td>36</td>
<td>5,2</td>
<td>3,8</td>
</tr>
<tr>
<td>keine Angaben</td>
<td>28</td>
<td>4,0</td>
<td>-</td>
</tr>
</tbody>
</table>

*Schätzung auf Grundlage der Angaben der Länderinstitutionen, Angaben und Referenzen der Biogasanlagenhersteller und Datenbank des DBFZ, GG - Grundgesamtheit

In Abb. 3-8 ist die regionale Verteilung der Biogasanlagen, die an der Betreiberbefragung teilgenommen haben, dargestellt. Deutlich wird dabei, dass diese Biogasanlagen bezogen auf den Anlagenbestand in Deutschland räumlich gleichmäßig verteilt sind.

Branche und Rechtsform

Die Mehrheit der Biogasanlagen (> 75%) werden als Gesellschaft bürgerlichen Rechts (GbR), GmbH & Co. KG oder als GmbH betrieben (Abb. 3-9). Die besonders in den neuen Bundesländern üblichen Genossenschaften (e.G.) haben einen Anteil von rund 9% am Anlagenbestand der befragten Betreiber. Nach Rückmeldungen der Betreiber werden etwa 8% der Biogasanlagen als Einzelunternehmen betrieben. Weitere Rechtsformen wie Kommanditgesellschaften (KG), offene Handelsgesellschaften (OHG), eingetragene Vereine (e.V.) und die Unternehmergeellschaft (haftungsbeschränkt) & Co. KG, zusammengefasst unter “sonstige”, sind eher selten. Die Verteilung der Rechtsformen bezogen auf die Anlagengrößen zeigt, dass die Biogasanlagen im Leistungsbereich über 500 kWel installierter Leistung überwiegend als GmbH oder GmbH & Co. KG betrieben werden. Die in den neuen Bundesländern häufig auftretende Rechtsform der eingetragenen Genossenschaft tritt vorwiegend im mittleren Leistungsbereich zwischen 150 und 500 kWel auf. Im kleineren Leistungsbereich (< 50 kWel) werden die Biogasanlagen in der Regel als Einzelunternehmen oder Gesellschaft bürgerlichen Rechts betrieben.

Genehmigung

Für die Genehmigung von Biogasanlagen kommen verschiedene Genehmigungsverfahren zur Anwendung: die baurechtliche Genehmigung oder eine Genehmigung nach Bundesimmissions-
anlagen zur Nutzung gasförmiger Bioenergieträger

schutzgesetz (BImSchG). Gemäß der Vierten Verordnung zur Durchführung des Bundesimmissionsschutzgesetzes (4. BImSchV) ist festgelegt, welche Biogasanlagen einer immissions-

schutzrechtlichen Genehmigung bedürfen oder ob ein baurechtliches Genehmigungsverfahren ausreichend ist. Entscheidend sind dabei Menge, Art und Herkunft der eingesetzten Substrate sowie die Feuerungswärmeleistung der Anlage [29].

Die Auswertung der Betreiberbefragung zeigt, dass etwas mehr als die Hälfte der Biogasanlagen (ca. 54 %) eine baurechtliche Genehmigung erhalten hat. Etwa 45 % der Biogasanlagen haben das immissionsschutzrechtliche Genehmigungsverfahren durchlaufen. Eine zur Genehmigung nach BImSchG zusätzliche Umweltverträglichkeitsprüfung (UVP) spielt bei der Genehmigung der Biogasanlagen eher eine untergeordnete Rolle (Abb. 3-10).

Abb. 3-10: Verteilung der Art der Anlagengenehmigung bei Biogasanlagen (Betreiberbefragung DBFZ 2010)

Vergütungsstruktur

Abb. 3-11: relative Häufigkeit der Vergütungsstruktur der Biogasanlagen (Betreiberbefragung DBFZ 2010)

Inanspruchnahme der Boni

Tabelle 3-5: Inanspruchnahme von Boni sowie der Vergütungserhöhung für Emissionsminderung neben der Grundvergütung für Biogasanlagen (Betreiberbefragung DBFZ 2010)

<table>
<thead>
<tr>
<th>NawaRo</th>
<th>KWK</th>
<th>Gülle</th>
<th>Landschaftspflege</th>
<th>Technologie</th>
<th>Vergütungserhöhung für Emissionsminderung</th>
<th>keine Boni</th>
</tr>
</thead>
<tbody>
<tr>
<td>606</td>
<td>515</td>
<td>523</td>
<td>10</td>
<td>77</td>
<td>232</td>
<td>15</td>
</tr>
</tbody>
</table>

Vergütungs-	NawaRo	KWK	Gülle	Landschaftspflege	Technologie
erhöhung für	40	30	38	0	4
Emissions-					
minderung					
keine Boni	16				
Anzahl der Rückmeldungen Neuanlagen	4	30	38	0	4
Anteil an Rückmeldungen Neuanlagen (%) (n=40)	100,0	75,0	95,0	0	10

KWK-Bonus

Die Differenzierung nach Art des KWK-Bonus zeigt, dass nach Angaben der Betreiber etwa 44 % der Biogasanlagen den KWK-Bonus nach EEG 2009 erhalten, die Mehrheit der Biogasanlagen jedoch den KWK-Bonus nach EEG 2004 erhält (Abb. 3-12 – A). Von den Anlagen, die vor 2009 in Betrieb gegangen sind und demnach nicht automatisch unter das EEG 2009 fallen, nehmen lediglich 36 % der Betreiber den KWK-Bonus nach EEG 2009 in Anspruch (Abb. 3-12 – B). Dabei wird deutlich, dass die Anreize zur verbesserten Wärmenutzung beim Anlagenbestand nur eine begrenzte Wirkung gezeigt haben. So erfüllen zahlreiche Anlagen die Anforderungen an den neuen KWK-Bonus nicht. Zudem stellt die Nachweispflicht durch einen Umweltgutachter ein Hemmnis dar.
Anlagen zur Nutzung gasförmiger Bioenergieträger

Abb. 3-12: Inanspruchnahme des KWK-Bonus differenziert nach KWK-Bonus 2004 und KWK-Bonus 2009 (Betreiberbefragung DBFZ 2010); A - Anlagenbestand, B – Inbetriebnahme vor 2009

Gülle-Bonus

Nach Angaben der Betreiber erhalten gegenwärtig rund 81 % der Biogasanlagenbetreiber den Gülle-Bonus für den Einsatz von Gülle und Festmist. Bei Neuanlagen wird der Bonus sogar von mehr als 90 % der Betreiber in Anspruch genommen. Eine Aufschlüsselung der Inanspruchnahme bezogen auf die installierte elektrische Anlagenleistung zeigt, dass vor allem im kleinen und mittleren Leistungsbereich der Güllebonus genutzt wird (Tabelle 3-7). Besonders deutlich ist, dass in der Leistungsklasse von 71 bis 150 kWel mehr als 90 % der Biogasanlagen den Güllebonus erhalten. Bei Kleinanlagen kleiner 70 kWel wird der Güllebonus bei weniger als 80 % der Anlagenbetreiber gewährt.

Tabelle 3-7: Inanspruchnahme des Güllebonus bezogen auf die installierte elektrische Analgenleistung (Betreiberbefragung DBFZ 2010)

<table>
<thead>
<tr>
<th>installierte elektr. Anlagenleistung (kWel)</th>
<th>Anteil Biogasanlagen mit Güllebonus (%)</th>
<th>Anteil Biogasanlagen ohne Güllebonus (%)</th>
<th>berücksichtigte Rückmeldungen (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 70</td>
<td>79</td>
<td>21</td>
<td>59</td>
</tr>
<tr>
<td>71 - 150</td>
<td>93</td>
<td>7</td>
<td>76</td>
</tr>
<tr>
<td>151 - 500</td>
<td>89</td>
<td>11</td>
<td>374</td>
</tr>
<tr>
<td>501 – 1 000</td>
<td>63</td>
<td>37</td>
<td>110</td>
</tr>
<tr>
<td>> 1 000</td>
<td>39</td>
<td>61</td>
<td>33</td>
</tr>
<tr>
<td>Gesamt</td>
<td>81</td>
<td>19</td>
<td>646</td>
</tr>
</tbody>
</table>

Technologie-Bonus

2004 für die Verstromung von Biomethan. Für die übrigen Biogasanlagen, die den Technologie-Bonus 2004 erhalten, sind nach den Rückmeldungen der Betreiberbefragung keine Informationen vorhanden, die Rückschlüsse darauf zulassen, wofür diese Anlagen den Technologie-Bonus erhalten (dargestellt in Abb. 3-13 unter „sonstiges, keine Angabe“).

Insgesamt lässt sich festhalten, dass die Mehrheit der Anlagen, die den Technologie-Bonus in Anspruch nehmen, diesen für das Trockenfermentationsverfahren erhalten. Für Neuanlagen spielt der Technologie-Bonus gegenwärtig eher eine untergeordnete Rolle. Der Bonus wird vorrangig für Altanlagen gewährt, die diesen für die Trockenfermentation beanspruchen.

Vergütungserhöhung für Emissionsminderung

Die Vergütungserhöhung für Emissionsminderung wird nach Angaben der Betreiber rund 36 % der Anlagenbetreiber in Anspruch zugestanden. Eine Aufschlüsselung der Inanspruchnahme bezogen auf die installierte elektrische Anlagenleistung der Biogasanlagen zeigt, dass vor allem Anlagen im mittleren und höheren Leistungsbereich diesen Bonus erhalten. Im kleinen Leistungsbereich (< 150 kWel) ist die Vergütungserhöhung für Emissionsminderung eher selten, wohingegen die Mehrheit der Biogasanlagen im großen Leistungsbereich (> 500 kWel) diese Vergütungserhöhung in Anspruch nimmt (Tabelle 3-15).

Eine detaillierte Betrachtung nach Art der Abgasreinigung bei Biogasanlagen erfolgt in Kapitel 3.3.
Anlagen zur Nutzung gasförmiger Bioenergieträger

Tabelle 3-8: Inanspruchnahme der Vergütungserhöhung für Emissionsminderung bezogen auf die Anlagengröße (Betreiberbefragung DBFZ 2010)

<table>
<thead>
<tr>
<th>installierte elektr. Anlagenleistung (kW_{el})</th>
<th>Anteil Biogasanlagen mit Vergütungserhöhung (%)</th>
<th>Anteil Biogasanlagen ohne Vergütungserhöhung (%)</th>
<th>berücksichtigte Rückmeldungen (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 70</td>
<td>0</td>
<td>100</td>
<td>57</td>
</tr>
<tr>
<td>71 - 150</td>
<td>6,6</td>
<td>93,4</td>
<td>76</td>
</tr>
<tr>
<td>151 - 500</td>
<td>34,8</td>
<td>65,2</td>
<td>368</td>
</tr>
<tr>
<td>501 – 1 000</td>
<td>71,8</td>
<td>28,2</td>
<td>110</td>
</tr>
<tr>
<td>> 1 000</td>
<td>67,7</td>
<td>32,3</td>
<td>31</td>
</tr>
<tr>
<td>Gesamt</td>
<td>35,9</td>
<td>64,1</td>
<td>646</td>
</tr>
</tbody>
</table>

3.2 Strom- und Wärmeerzeugung

Im folgenden Kapitel werden neben den Daten zur Strom- und Wärmeerzeugung aus Biogas im Jahr 2010 einige ausgewählte Parameter, die im Rahmen der Betreiberbefragung hinsichtlich der Strom- und Wärmeerzeugung erhoben wurden, dargestellt.

3.2.1 Stromerzeugung

Die potenzielle Stromerzeugung von Biogas für das Jahr 2010, geschätzt auf Basis der bis Jahresende installierten elektrischen Anlagenleistung, beträgt etwa 17,3 TWh_{el}^{8}. Die reale Stromerzeugung aus Biogas im Jahr 2010 ist unter Berücksichtigung des über das Jahr verteilten Zubaus von Neuanlagen geringer abzuschätzen. Es kann davon ausgegangen werden, dass die reale Stromerzeugung im Jahr 2010 rund 15,6 TWh_{el}^{9} betrug. Dies entspricht einem Ausbau der Stromproduktion aus Biogas gegenüber dem Vorjahr um 3,5 TWh_{el}.

Unter Berücksichtigung eines prognostizierten Anlagenzubaus von etwa 350 MW_{el} im Jahr 2011, kann für 2011 eine Stromproduktion aus Biogas von etwa 18,8 TWh_{el} prognostiziert werden.

8 Abschätzung der potenziellen Stromerzeugung auf Basis einer installierten elektrischen Anlagenleistung Ende 2010 von 2 300 MW_{el}, mittlerer Volllaststunden von 7 650 h, wobei der Zeitpunkt der Inbetriebnahme von Neuanlagen nicht berücksichtigt ist.
Gasverwertung

Darüber hinaus werden vereinzelt Mikrogasturbinen zur Strombereitstellung angeboten. Gegenwärtig werden diese jedoch nur vereinzelt in Biogasanlagen eingesetzt. Genaue Angaben über die Anzahl am Biogasanlagenbestand in Deutschland liegen dazu nicht vor. Im Rahmen der Betreiberbefragung gab ein Anlagenbetreiber an, eine Mikrogasturbine zur Stromerzeugung einzusetzen. Des Weiteren werden Stirlingmotoren und Brennstoffzellen vorwiegend in Forschungsprojekten betrieben.

![Einsatz von Gas-Otto- und Zündstrahl-Motoren zur Verstromung des Biogases (Betreiberbefragung DBFZ 2010)](image)

In den vergangen Jahren sind zunehmend Anlagenkonzepte interessant geworden, bei denen das Biogas an den Ort der Nachfrage transportiert werden kann. Dabei spielen Mikrogasnetze und Satelliten-BHKW

Betriebs- und Volllaststunden

Tabelle 3-9: Mittlere Betriebsstunden- und Volllaststundenzahl sowie Standardabweichung und Median (Betreiberbefragung DBFZ 2010)

<table>
<thead>
<tr>
<th></th>
<th>Mittelwert \bar{x} (h/a)</th>
<th>Standardabweichung σ</th>
<th>Median</th>
<th>berücksichtigte Rückmeldungen (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebsstunden</td>
<td>8225</td>
<td>947</td>
<td>8500</td>
<td>510</td>
</tr>
<tr>
<td>Volllaststunden</td>
<td>7673</td>
<td>1369</td>
<td>8000</td>
<td>359</td>
</tr>
</tbody>
</table>

Eine Aufschlüsselung der Volllaststunden nach dem Inbetriebnahmekalender der Anlage zeigt, dass jüngere Biogasanlagen nach Angaben der Betreiber eine höhere Volllaststundenzahl erreichen als ältere Biogasanlagen. Während 50 % Biogasanlagen, die vor 2000 in Betrieb gegangen sind eine Volllaststundenzahl über 7 900 h/a erreichen, erzielen 50 % Biogasanlagen, die im Jahr 2009 in Betrieb gegangen sind eine Volllaststundenzahl von über 8 200 h/a (Median, Tabelle 3-10). Zudem ist der Schwankungsbereich der erzielten Volllaststunden bei älteren Biogasanlagen größer als bei neueren Biogasanlagen (Tabelle 3-10).
Tabelle 3-10: mittlere Betriebsstunden- und Volllaststundenzahl, Standardabweichung und Median in Abhängigkeit von dem Zeitpunkt der Inbetriebnahme der Anlage (Betreiberbefragung DBFZ 2010)

<table>
<thead>
<tr>
<th>Jahr der Inbetriebnahme</th>
<th>Mittelwert \bar{x} (h/a)</th>
<th>Standardabweichung σ</th>
<th>Median</th>
<th>berücksichtigte Rückmeldungen (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>vor 2000</td>
<td>6938</td>
<td>2114</td>
<td>7900</td>
<td>37</td>
</tr>
<tr>
<td>2000 - 2003</td>
<td>7416</td>
<td>1584</td>
<td>8000</td>
<td>85</td>
</tr>
<tr>
<td>2004 - 2008</td>
<td>7891</td>
<td>940</td>
<td>8000</td>
<td>187</td>
</tr>
<tr>
<td>2009</td>
<td>8022</td>
<td>739</td>
<td>8200</td>
<td>38</td>
</tr>
</tbody>
</table>

keine Berücksichtigung der Biogasanlagen, die 2010 in Betrieb gegangen sind, da kein vollständiges Betriebsjahr zugrunde liegt.

Eigenstrombedarf

Hinsichtlich des Eigenstrombedarfs der Biogasanlagen zeigt sich, dass der Strombedarf der Anlagen im Mittel bei 7,8 % - bezogen auf die produzierte Strommenge - liegt. Diesbezüglich konnten 473 Rückmeldungen der Anlagenbetreiber berücksichtigt werden. Damit liegt der ermittelte Eigenstrombedarf in der Größenordnung der Befragungen der Vorjahre und entspricht Angaben der Literatur [1],[28]. In Abb. 3-15 ist der Eigenstrombedarf der installierten elektrischen Anlagenleistung gegenübergestellt. Deutlich wird, dass Eigenstrombedarfe über 20 % der produzierten Strommenge eher die Ausnahme darstellen. 68,3 % der Anlagen haben einen Eigenstrombedarf zwischen 3 und 12 % ($\bar{x} \pm \sigma$).

![Abb. 3-15: Verteilung des Eigenstrombedarfs in Abhängigkeit von der installierten Anlagenleistung (Betreiberbefragung DBFZ 2010)](image_url)

Der mittlere Eigenstrombedarf der Anlagen bezogen auf die installierte Leistung ist in Tabelle 3-11 detaillierter dargestellt. Es ist zu erkennen, dass insbesondere im kleineren Leistungsbereich ($\leq 70 \text{kW}_{el}$)

Tabelle 3-11: Mittlerer Eigenstrombedarf und Standardabweichung in Abhängigkeit von der installierten elektrischen Anlagenleistung (Betriebsbefragung DBFZ 2010)

<table>
<thead>
<tr>
<th>installierte elektr. Anlagenleistung (kWel)</th>
<th>Mittlerer Eigenstrombedarf (%)</th>
<th>Standardabweichung σ</th>
<th>berücksichtigte Rückmeldungen (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\leq 70</td>
<td>10,1</td>
<td>5,9</td>
<td>33</td>
</tr>
<tr>
<td>71 - 150</td>
<td>8,6</td>
<td>4,4</td>
<td>44</td>
</tr>
<tr>
<td>151 - 500</td>
<td>7,2</td>
<td>3,2</td>
<td>275</td>
</tr>
<tr>
<td>501 – 1 000</td>
<td>8,3</td>
<td>6,5</td>
<td>93</td>
</tr>
<tr>
<td>$> 1 000</td>
<td>7,7</td>
<td>2,8</td>
<td>27</td>
</tr>
<tr>
<td>Gesamt</td>
<td>7,8</td>
<td>4,4</td>
<td>472</td>
</tr>
</tbody>
</table>

3.2.2 Wärmeezeugung

Eigenwärmebedarf
Der Eigenwärmebedarf einer Biogasanlage ist stark abhängig vom eingesetzten Substrat, dem Fermentervolumen und der Anlagengröße. Im Ergebnis der Betriebsbefragung liegt der mittlere Eigenwärmebedarf der betrachteten Biogasanlagen nach Angaben der Betreiber bei 27 % der produzierten Wärmemenge. Bei 68,3 % der Anlagen wurde ein Eigenwärmebedarf zwischen 9 und 44 %

10 Zu Grunde gelegte verfügbare Wärmemenge der BHKW: 18,5 TWh$_{th}$. Ausgehend von der verfügbaren Wärmemenge wird abgeschätzt, dass rund 70 bis 80 %, je nach Eigenwärmebedarf der Anlage, für externe Wärmenutzungen zur Verfügung stehen. Als durchschnittlicher Wärmenutzungsgrad werden rund 45 % angenommen (nach Abzug des Eigenwärmebedarfs von der verfügbaren Abwärme).
Anlagen zur Nutzung gasförmiger Bioenergieträger

$(\bar{x} \pm \sigma)$ ermittelt. Diesbezüglich konnten 228 Rückmeldungen der Betreiber berücksichtigt werden. Es ist zu berücksichtigen, dass zahlreiche Betreiber darauf hinwiesen, dass der Eigenwärmebedarf der Anlage nicht gemessen wird. Die Angaben der Betreiber sind somit oft mit großen Unsicherheiten behaftet.

Tabelle 3-12: Mittlerer Eigenwärmebedarf und Standardabweichung in Abhängigkeit von der installierten elektrischen Anlagenleistung (Betreiberbefragung DBFZ 2010)

<table>
<thead>
<tr>
<th>installierte elektr. Anlagenleistung (kW_e)</th>
<th>Mittlerer Eigenwärmebedarf $(%)$</th>
<th>Standardabweichung σ</th>
<th>berücksichtigte Rückmeldungen (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 70</td>
<td>49</td>
<td>19,0</td>
<td>15</td>
</tr>
<tr>
<td>71 - 150</td>
<td>45</td>
<td>15,9</td>
<td>21</td>
</tr>
<tr>
<td>151 - 500</td>
<td>26</td>
<td>16,2</td>
<td>119</td>
</tr>
<tr>
<td>501 – 1 000</td>
<td>23</td>
<td>13,3</td>
<td>55</td>
</tr>
<tr>
<td>> 1 000</td>
<td>14</td>
<td>7,9</td>
<td>18</td>
</tr>
<tr>
<td>Gesamt</td>
<td>27</td>
<td>17,3</td>
<td>228</td>
</tr>
</tbody>
</table>

Externe Wärmenutzung

In Hinblick auf die Angaben der Anlagenbetreiber zur externen Wärmenutzung zeigt sich, dass im Mittel etwa 43 % der verfügbaren Wärmemenge des BHKW (nach Abzug des Eigenwärmebedarfs) extern genutzt werden. Mit einer Standardabweichung von etwa 27 % setzen 68,3 % der Betreiber zwischen 16 und 70 % der verfügbaren Wärmemenge nach Abzug des Eigenwärmebedarfs für eine externe Wärmenutzung ein. Dabei konnten insgesamt 352 Rückmeldungen von Biogasanlagenbetreibern berücksichtigt werden. Die Spannweite des Anteils der extern genutzten Wärmemenge liegt zwischen 2 und 100 %, sofern angegeben wurde, dass überhaupt eine Wärmenutzung erfolgt.
Von den neu in Betrieb gegangenen Biogasanlagen gaben 14 Anlagenbetreiber den Umfang der externen Wärmenutzung an. Im Mittel liegt der Wärmenutzungsgrad demnach bei ca. 51 %. Bei der Mehrzahl der Neuanlagen liegt der Wärmenutzungsgrad der extern verfügbaren Wärme nach Aussagen der Betreiber über 40 %. Inwieweit es sich dabei um Planungen oder realisierte Konzepte handelt, geht aus den Fragebögen nicht hervor.

In Abb. 3-16 ist die Häufigkeit der Nennungen hinsichtlich des externen Wärmenutzungsgrades dargestellt. Nach Angaben der Betreiber nutzt die Mehrheit der Biogasanlagen weniger als 50 % der verfügbaren Wärmemenge (nach Abzug des Eigenwärmebedarfs). 26 Anlagenbetreiber gaben an, die verfügbare Wärmemenge für keine weitere Nutzung einzusetzen (7,5 % der befragten Betreiber). Demgegenüber gaben 12 Anlagenbetreiber eine externe Wärmenutzung von 100 % an. Deutlich wird, dass der Grad der Wärmenutzung bei Biogasanlagen stark variiert und nach wie vor Defizite bestehen. In Tabelle 3-13 ist der Wärmenutzungsgrad bezogen auf die Anlagengröße aufgeschlüsselt. Im Kleinstanlagenbereich (≤ 70 kWel) und im großen Leistungs bereich (> 500 kWel) werden im Mittel die höchsten Wärmenutzungsgrade erreicht. Insbesondere im mittleren Leistungsbereich zwischen 150 und 500 kW gibt es noch zahlreiche Biogasanlagen, die die extern verfügbare Wärmemenge keiner weiteren Nutzung zuführen. Das ist vordergründig darauf zurückzuführen, dass Anlagenbetreiber kleiner Biogasanlagen die verfügbare Wärme in der Regel vor Ort in vorhandenen Wärmesenken (Stallbeheizung, Wohnhaus) einsetzen können. Für Anlagen im großen Leistungsbereich besteht oftmals ein gesondertes Wärme konzept für die Abnahme der verfügbaren großen Wärmemengen. Im Ergebnis der Auswertung zeigt sich, dass die externe Wärmenutzung im mittleren Leistungsbereich offensichtlich schwieriger zu realisieren ist.
Tabelle 3-13: Mittlerer externer Wärmenutzungsgrad und Standardabweichung in Abhängigkeit von der installierten elektrischen Anlagenleistung (Betreiberbefragung DBFZ 2010)

<table>
<thead>
<tr>
<th>installierte elektr. Anlagenleistung (kWₑ)</th>
<th>Mittlerer externer Wärmenutzungsgrad (%)</th>
<th>Standardabweichung σ</th>
<th>Anlagen ohne externe Wärmenutzung (Anzahl)</th>
<th>berücksichtigte Rückmeldungen (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 70</td>
<td>47,0</td>
<td>25,7</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>71 - 150</td>
<td>37,6</td>
<td>25,8</td>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td>151 - 500</td>
<td>38,8</td>
<td>26,8</td>
<td>18</td>
<td>200</td>
</tr>
<tr>
<td>501 – 1 000</td>
<td>50,7</td>
<td>25,8</td>
<td>2</td>
<td>73</td>
</tr>
<tr>
<td>> 1 000</td>
<td>55,5</td>
<td>28,7</td>
<td>1</td>
<td>19</td>
</tr>
</tbody>
</table>

Eine genaue Angabe zur Art der Trocknungsprozesse wurde von 80 Betreibern vorgenommen. Demnach spielt die Trocknung von Getreide die größte Rolle, wobei jedoch die Holz- bzw. Scheitholztrocknung sowie die Hackschnitzeltrocknung eine ähnliche Bedeutung haben (Abb. 3-18). 5% der Betreiber gaben an, eine Gärresttrocknung vorzunehmen.

Mit dem schnellen Wachstum der Biogasbranche und des Anlagenbestandes in Deutschland gibt es vielfältige verfahrenstechnische Entwicklungen hinsichtlich der angebotenen und verfügbaren

3.3.1 Ausgewählte Parameter – Ergebnisse Betreiberbefragung

Silo

Für die Lagerung und Silierung der pflanzlichen Substrate für die Biogaserzeugung werden Silos genutzt. Dabei werden nach Angaben der Betreiber in der Regel Fahrsilos verwendet. So gaben mehr als 85 % der Betreiber an, ein Fahrsilo zu nutzen. An den übrigen Biogasanlagen werden vorrangig befestigte Bodenplatten zur Lagerung und Silierung genutzt (Freigärhaufen), aber auch Schlauchsilos.

Die Abdeckung der Silos erfolgt in der Regel mit einer Folie. Nach Angaben der Betreiber sind nahezu alle Silos (98 %) mit einer Folienabdeckung versehen. 12 Anlagenbetreiber gaben an, das Silo nicht abzudecken.

Prozessführung

Bioabfälle einsetzen. Im Rahmen der Betreiberbefragung wird von den neu in Betrieb gegangenen Biogasanlagen keine Anlage mit Trockenfermentation betrieben.

Gasreinigung, Entschwefelung

Im Rahmen der Betreiberbefragung wurden die Verfahren zur Entschwefelung/ Gasreinigung erfasst. Nach Angaben der Betreiber findet dabei die biologische Entschwefelung mittels Lufteinblasung die meiste Anwendung. Mehr als 80 % der Betreiber nutzen dieses Verfahren zur Entschwefelung. Daneben sind der Einsatz von Aktivkohle und die Sulfidfällung (Zudosierung von Eisen) weitere Verfahren, die jeweils bei etwa 30 % der Anlagen zu Einsatz kommen. In Tabelle 3-14 ist die Einsatzhäufigkeit der einzelnen Verfahren dargestellt.

<table>
<thead>
<tr>
<th>Verfahren</th>
<th>Rückmeldungen</th>
<th>Anteil (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lufteinblasung</td>
<td>554</td>
<td>88,5</td>
</tr>
<tr>
<td>Aktivkohle</td>
<td>193</td>
<td>30,8</td>
</tr>
<tr>
<td>Eisenzudosierung</td>
<td>175</td>
<td>28,0</td>
</tr>
<tr>
<td>Biowäscher</td>
<td>30</td>
<td>4,8</td>
</tr>
<tr>
<td>sonstige Verfahren</td>
<td>13</td>
<td>2,1</td>
</tr>
</tbody>
</table>

Beim Einsatz von Biogasanlagen erfolgt eine Kombination der unterschiedlichen Verfahren zur Grob- und Feinentschwefelung. Dabei werden am häufigsten die Verfahren der biologischen Entschwefelung mittels Lufteinblasung und Aktivkohlefilter miteinander kombiniert (ca. 15 % der Biogasanlagen). Eine Kombination der Sulfidfällung (Eisenzudosierung) und Lufteinblasung findet
ebenso häufig Anwendung. Dennoch erfolgt bei der Mehrheit der Biogasanlagen (ca. 48 %) die Gasentschweifelung allein über die biologische Entschweifelung mittels Lufteinblasung.

Abgasbehandlung

Gasfackel

Eine Differenzierung nach der Art der Fackel (stationär, mobil) zeigt dabei auf, dass die Mehrheit der Betreiber über eine stationäre Gasfackel am Standort der Biogasanlage verfügt. Etwa 40 % der Betreiber haben Zugriff auf eine mobile Fackel. Diese kann gemietet und im Bedarfsfall zur Anlage transportiert werden. Dieses Vorgehen wird in der Regel in einem Vertrag fixiert und der Betreiber kann das Vorhalten einer mobilen Fackel nachweisen. Weiterhin kommt es vor, dass mehrere Anlagenbetreiber
gemeinsam in eine mobile Fackel investieren und diese nach Bedarf eingesetzt wird. Die Verfügbarkeit einer stationären oder mobilen Fackel bezogen auf die Anlagengröße ist in Tabelle 3-16 dargestellt. Deutlich wird, dass mit zunehmender Anlagengröße der Anteil der Anlagen, die über eine stationäre Fackel am Anlagenstandort verfügen, steigt. Im Leistungsbereich über 500 kWₑ ist mehr als 80 % der Fackeln stationär am Anlagenstandort installiert. Im kleinen Leistungsbereich wird die Fackel eher als mobile Fackel vorgehalten. Die Aufschlüsselung der Verfügbarkeit einer Fackel zeigt, dass insbesondere im kleineren Leistungsbereich oftmals keine Fackel vorhanden ist, während im mittleren und größeren Leistungsbereich die Mehrheit der Biogasanlagen über eine Fackel verfügt (Tabelle 3-16).

Tabelle 3-16: Verfügbarkeit einer Gasfackel und Differenzierung nach Art der Gasfackel (stationär, mobil) bezogen auf die installierte elektrische Anlagenleistung

<table>
<thead>
<tr>
<th>Install. elektr. Anlagenleistung (kWₑ)</th>
<th>Fackel vorhanden (%)</th>
<th>ohne Fackel (%)</th>
<th>berücksichtigte Rückmeldungen (Anzahl)</th>
<th>Anteil mobile Fackel (%)</th>
<th>Anteil stationäre Fackel (%)</th>
<th>berücksichtigte Rückmeldungen (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 70</td>
<td>9</td>
<td>91</td>
<td>56</td>
<td>33</td>
<td>67</td>
<td>3</td>
</tr>
<tr>
<td>71 - 150</td>
<td>32</td>
<td>68</td>
<td>73</td>
<td>61</td>
<td>39</td>
<td>23</td>
</tr>
<tr>
<td>151 - 500</td>
<td>50</td>
<td>50</td>
<td>361</td>
<td>50</td>
<td>50</td>
<td>159</td>
</tr>
<tr>
<td>501 – 1 000</td>
<td>72</td>
<td>28</td>
<td>107</td>
<td>19</td>
<td>81</td>
<td>68</td>
</tr>
<tr>
<td>> 1 000</td>
<td>72</td>
<td>28</td>
<td>32</td>
<td>14</td>
<td>86</td>
<td>14</td>
</tr>
</tbody>
</table>

Gärrestlager und Gärrestlagerabdeckung

Die Lagerung der vergorenen Substrate erfolgt in Gärrestlagern, die in der Regel mit einer Speicherkapazität von 180 Tagen ausgelegt werden [29]. Im Rahmen der Betreiberbefragung wurde das Volumen der Gärrestlager abgefragt. Im Mittel liegt das Gärrestlagervolumen der Biogasanlagen bei rund 3 600 m³. In Tabelle 3-17 ist das Gärrestlagervolumen in Abhängigkeit von der installierten elektrischen Anlagenleistung dargestellt.
Tabelle 3-17: mittleres Gärrestlagervolumen, Standardabweichung und Median bezogen auf die installierte elektrische Anlagenleistung

<table>
<thead>
<tr>
<th>installierte elektr. Anlagenleistung (kWₑ)</th>
<th>Mittleres Gärrestvolumen (m³)</th>
<th>Standardabweichung (σ)</th>
<th>Median</th>
<th>berücksichtigte Rückmeldungen (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 70</td>
<td>841</td>
<td>468</td>
<td>800</td>
<td>55</td>
</tr>
<tr>
<td>71 - 150</td>
<td>1580</td>
<td>1020</td>
<td>1265</td>
<td>68</td>
</tr>
<tr>
<td>151 - 500</td>
<td>3222</td>
<td>2493</td>
<td>2500</td>
<td>325</td>
</tr>
<tr>
<td>501 – 1 000</td>
<td>4793</td>
<td>2799</td>
<td>4200</td>
<td>99</td>
</tr>
<tr>
<td>> 1 000</td>
<td>9197</td>
<td>6632</td>
<td>8000</td>
<td>29</td>
</tr>
</tbody>
</table>

Ausfallzeiten

Die Anlagenverfügbarkeit und damit die Volllaststundenzahl der Biogasanlagen sind stark abhängig von Ausfallzeiten entlang der gesamten Prozesskette.

Tabelle 3-18: Verteilung der Ursachen von Ausfallzeiten (Betreiberbefragung DBFZ 2010)

<table>
<thead>
<tr>
<th></th>
<th>Eintrags-technik</th>
<th>Rühr-technik</th>
<th>Schaum</th>
<th>Schwimmschicht</th>
<th>Über-säuerung</th>
<th>Korrosion</th>
<th>BHKW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anzahl der Rückmeldungen</td>
<td>263</td>
<td>186</td>
<td>24</td>
<td>52</td>
<td>46</td>
<td>26</td>
<td>410</td>
</tr>
<tr>
<td>Anteil an Rückmeldungen (%) (n=561)</td>
<td>46,9</td>
<td>33,2</td>
<td>4,3</td>
<td>9,3</td>
<td>8,2</td>
<td>4,6</td>
<td>73,1</td>
</tr>
</tbody>
</table>

DIE genauen Ursachen für die jeweiligen Ausfälle wurden im Rahmen der Befragung nicht erhoben. Von zahlreichen Betreibern wurden jedoch Ausfallzeiten, die dem BHKW zuzuordnen sind, mehrfach als planmäßige Ausfälle infolge von Wartungsarbeiten benannt.

Für Neuanlagen können in der Auswertung keine Aussagen zu Ausfallzeiten getroffen werden, da diese noch kein ganzes Jahr im vollen Betrieb sind bzw. sich zum Zeitpunkt der Befragung in der Anfahrphase befanden.

3.3.2 Biogasaufbereitung und -einspeisung

3.4 Biomasseeinsatz

3.4.1 Eingesetzte Stoffströme

Die Verteilung der eingesetzten Substrate in Biogasanlagen auf Basis der Betreiberbefragung 2010 ist in Abb. 3-23 dargestellt. Die prozentualen Angaben beziehen sich dabei auf die massebezogene Verteilung (Frischmasse) aller Substratmengen, die auf Basis der Betreiberbefragung ermittelt werden konnten. Insgesamt konnten 622 Rückmeldungen mit Angabe der Substratmenge in der Auswertung berücksichtigt werden. Zu beachten ist jedoch, dass davon auszugehen ist, dass der Substratinput nicht immer vollständig auf dem Fragebogen angegeben wurde.

Eine Aufschlüsselung des Substrateinsatzes nach installierter elektrischer Anlagenleistung zeigt, dass der Anteil von Gülle am Gesamtinput mit zunehmender Anlagenleistung sinkt (Tabelle 3-19). Während im Leistungsbereich < 70 kWel im Mittel rund 75 % Gülle in Biogasanlagen eingesetzt werden, sind es im Leistungsbereich > 500 kWel nur noch knapp 30 % oder weniger. In Tabelle 3-19 sind die Ergebnisse des durchschnittlichen Substrateinsatzes bezogen auf die Anlagengröße dargestellt. Der Anteil nachwachsender Rohstoffe am Substrateinsatz steigt dagegen mit zunehmender Anlagengröße. Bioabfälle und industrielle Reststoffe werden fast ausschließlich in Anlagen größeren Leistungsbereichs (> 500 kWel) eingesetzt. Zu berücksichtigen ist, dass der Mittelwert des Einsatzes von Bioabfällen und industriellen/ landwirtschaftlichen Reststoffen verzerrt ist, da diese Substrate in nur wenigen Anlagen eingesetzt werden, dann jedoch mit einem verhältnismäßig großen Anteil (> 70 %).
Anlagen zur Nutzung gasförmiger Bioenergieträger

Abb. 3-24: Energiebezogener Substrateinsatz in Biogasanlagen (Betreiberbefragung DBFZ 2010)
Bezugsgröße: spezifische Methanerträge der eingesetzten Substrate

<table>
<thead>
<tr>
<th>Install. elektr. Anlagenleistung (kWₐ)</th>
<th>Gülle</th>
<th>NawaRo</th>
<th>Bioabfall</th>
<th>indust./ landw. Reststoffe</th>
<th>berücksichtigte Rückmeldungen (Anzahl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mittelwert (%)</td>
<td>Mittelwert (%)</td>
<td>Mittelwert (%)</td>
<td>Mittelwert (%)</td>
<td></td>
</tr>
<tr>
<td>≤ 70</td>
<td>76</td>
<td>24</td>
<td>0</td>
<td>1</td>
<td>56</td>
</tr>
<tr>
<td>71 - 150</td>
<td>50</td>
<td>48</td>
<td>1</td>
<td>1</td>
<td>72</td>
</tr>
<tr>
<td>151 - 500</td>
<td>44</td>
<td>53</td>
<td>2</td>
<td>2</td>
<td>354</td>
</tr>
<tr>
<td>501 – 1 000</td>
<td>32</td>
<td>56</td>
<td>10</td>
<td>2</td>
<td>105</td>
</tr>
<tr>
<td>> 1 000</td>
<td>24</td>
<td>57</td>
<td>16</td>
<td>3</td>
<td>32</td>
</tr>
</tbody>
</table>

Veränderung Gülleeinsatz in Biogasanlagen
Die Auswertung des Gülleeinsatzes in Biogasanlagen zeigt, dass die Mehrheit der Anlagen im Jahr 2010 zwischen 30 und 50 % (massebezogen) tierische Exkremente einsetzen (Tabelle 3-20). Nach Angaben der Betreiber liegt bei etwa 33 % der Biogasanlagen der Input an tierischen Exkrementen bei über 50 %. Rund 24 % der Betreiber setzen demnach weniger als 30 % Exkremente ein. Hier wird deutlich, dass die Angaben zum Substrateinsatz nicht absolut vollständig angegeben wurden, da nach Angaben der Betreiber jedoch 81 % der Betreiber den Güllebonus erhalten. Demnach dürften nur 19 % der Biogasanlagen weniger als 30 % Exkremente einsetzen. Diese Fehler sind bei der Bewertung der Daten
zu berücksichtigen. Gegenüber dem Vorjahr ist klar zu sehen, dass der Anteil der Biogasanlagen, die weniger als 30 % Gülle in Biogasanlagen einsetzen, abgenommen hat. Das zeigt zum einen, dass der Gülle-Bonus (Substrateinsatz mindestens 30 % Exkremente) von einer zunehmenden Anzahl von Biogasanlagen genutzt wird und damit auch mehr Gülle in Biogasanlagen eingesetzt wird.

Tabelle 3-20: Verteilung des massebezogenen Substrateinsatzes in Biogasanlagen für tierische Exkremente, (Betreiberbefragung DBFZ 2010), [1]

<table>
<thead>
<tr>
<th>Einsatz tierischer Exkremente (massebezogen)</th>
<th>2009 – Anteil der Biogasanlagen (%)</th>
<th>2010 - Anteil der Biogasanlagen (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 30 %</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>30 – 50 %</td>
<td>30</td>
<td>43</td>
</tr>
<tr>
<td>50,1 – 75 %</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>75,1 – 100 %</td>
<td>20</td>
<td>17</td>
</tr>
<tr>
<td>Anzahl Rückmeldungen</td>
<td>420</td>
<td>622</td>
</tr>
</tbody>
</table>

Im Ergebnis der Betreiberbefragung lässt sich somit aufzeigen, dass mit der Neufassung des EEG 2009 bei nicht ganz 30 % der Biogasanlagen ein zusätzlicher Einsatz von Gülle in Biogasanlagen mobilisiert werden konnte.

Abb. 3-25: veränderter Gülleinsatz in Biogasanlagen seit Neufassung des EEG 2009 bezogen auf die Rückmeldungen (Betreiberbefragung DBFZ 2010)

Einsatz nachwachsender Rohstoffe

Abb. 3-26: Massebezogener Substrateinsatz nachwachsender Rohstoffe in Biogasanlagen (Betreiberbefragung DBFZ 2010)
3.4.2 Flächennutzung zur Biogaserzeugung

3.4.3 Markt- und Preisentwicklungen

In Kapitel 4 erfolgt eine nähere Darstellung der Substratkosten und mittleren Transportentfernungen der Substrate für den Einsatz in Biogasanlagen.
4 Anlagen zur Nutzung flüssiger Bioenergieträger

In den Betrachtungen zur Nutzung flüssiger Bioenergieträger werden die im Anlagenregister der BLE enthaltenen Anlagen zur energetischen Verwertung von Produktionsrückständen aus der Papier- und Zellstoffindustrie nicht berücksichtigt.

4.1 Entwicklung des Anlagenbestandes

Anlagen zur Nutzung flüssiger Bioenergieträger

Abb. 4-1 Entwicklung von Anlagenzahl und installierter elektrischer Leistung von Pflanzenöl-BHKW seit 2004

In Abb. 4-2 sind die bei der BLE registrierten Pflanzenöl-BHKW nach den Größenklassen (elektrische Leistung) dargestellt. Etwa 45 % der Anlagen liegen im Leistungsbereich 150-500 kWel, was etwa zwei Drittel der elektrischen Leistung entspricht. Ein Anteil von etwa 15 % der elektrischen Leistung liegt in der Leistungsklasse über 1 MWel, die jedoch lediglich 1 % der Anlagenzahl darstellen. Im niedrigeren Leistungsbereich bis 150 kWel liegen über 50 % der Anlagen, deren Beitrag zur elektrischen Leistung bei etwa 13 % liegt.

Abb. 4-2 Anteil der registrierten Anlagen nach Leistungsklassen entsprechend Anzahl und elektrischer Leistung [12]

Die Leistungsverteilung der BHKW der Befragung 2010/2011 (siehe Abb. 4-7) repräsentiert gut die Größenverteilung aller registrierten BHKW. In den Ergebnissen der Befragung (siehe Abb. 4-8) wird deutlich, dass derzeit ein erheblicher Teil der Anlagen vorübergehend oder ggf. endgültig stillgelegt ist. Vor allem die Anlagen im Leistungsbereich ab 150 kWel sind stark betroffen (vgl. Abb. 4-8). Falls sich
die Rahmenbedingungen, u.a. der z.Z. hohen Pflanzenölpreise nicht verändern, wird das in 2011 erhebliche Auswirkungen auf die Leistung des Anlagenbestandes haben.

4.2 Brennstoffeinsatz

In der vom DBFZ im Dezember 2010/ Januar 2011 durchgeführten Umfrage bei den Betreibern von Pflanzenöl-BHKW (siehe dazu Abschnitt 4.3, S. 85) ergab sich hinsichtlich des Brennstoffeinsatzes die in Abb. 4-3 dargestellte Verteilung. Demnach wird im überwiegenden Teil der befragten Anlagen Rapsöl eingesetzt. Diese Differenz kann zum einen an der geringen Anzahl der Stichproben liegen, was eine verfälschte Darstellung der realen Gesamtsituation zur Folge hätte. Zum anderen besteht die Möglichkeit, dass aufgrund der ggf. besseren Verfügbarkeit zertifizierter heimischer Biomasse einige Anlagenbetreiber ihren eingesetzten Brennstoff im Verlauf des Jahres 2010 gewechselt haben.
4.2.1 Preisentwicklung Pflanzenöl

Abb. 4-4 Entwicklung der Preise für Pflanzenölraffinate in Deutschland und Europa 2010/2011 [1]

4.2.2 Auswirkungen der BioSt-NachV

In PÖL-BHKW, die nach dem EEG vergütet werden, darf ab 01.01.2011 nur noch entsprechend der BioSt-NachV zertifiziertes Pflanzenöl eingesetzt werden. Bisher sind mit ISCC und REDcert zwei Systeme zur Zertifizierung nachhaltiger Biomasse von der Bundesanstalt für Landwirtschaft und Ernährung zugelassen. ISCC verfügt über 17 (Stand 25.01.2011) und REDcert über 20 zugelassene Zertifizierungsstellen (Stand 08.12.2010).

Abb. 4-6 Mehrkosten in €/t für als nachhaltig zertifiziertes Raps- und Palmöl (Umfrage Pöl-BHKW-Betreiber)

4.3 Auswertung der Befragung

In Abb. 4-7 sind die Leistungsklassen der befragten BHKW-Betreiber und ihr Anteil entsprechend Anlagenzahl und installierter elektrischer Leistung dargestellt. Verglichen mit Abb. 4-2 kann die Verteilung der Anlagengröße auf die Befragten als repräsentativer Querschnitt gewertet werden.
Anlagen zur Nutzung flüssiger Bioenergieträger

Abb. 4-7
Leistungsklassen der BHKWs der Befragung nach Anzahl und installierter elektrischer Leistung

Der Status der Anlagen der Befragung ist in Abb. 4-8 dargestellt, wobei bei mehreren BHKW eines Betreibers auch Mehrfachnennungen möglich waren. Demzufolge waren zum Zeitpunkt der Befragung etwa ein Drittel der Anlagen vorübergehend oder endgültig außer Betrieb, die damit verbundene installierte elektrische Leistung liegt mit 12,7 MW el bei nahezu 50 % der Anlagen der Befragung. Zur installierten Leistung haben 5 der 67 Befragten keine Angaben gemacht. Die Befragungsergebnisse sind in Abb. 4-8 der installierten elektrischen Leistung der bei der BLE registrierten Anlagen nach Leistungsklassen gegenübergestellt. Es wird deutlich, dass in den beiden stärksten Leistungsklassen auch der Anteil der vorübergehend oder endgültig stillgelegten Anlagen am stärksten ist.

Abb. 4-8
Status der BHKWs der Befragung nach installierter elektrischer Leistung in MW sowie der bei der BLE registrierten installierten elektrischen Leistung in den Leistungsklassen [12]

In Abb. 4-9 sind die Bonuszahlungen an die befragten BHKW-Betreiber dargestellt. Es wird deutlich, dass beim KWK-Bonus sowie beim NawaRo-Bonus häufiger Zahlungen entsprechend EEG 2004
gegenüber denen entsprechend EEG 2009 mit 32 gegenüber 17 bzw. 40 gegenüber 14 angegeben werden.

Abb. 4-9 Anzahl der befragten BHKW-Betreiber mit Bonuszahlungen

Die produzierte Wärme der in der Befragung erfassten BHKW wird wie in Abb. 4-10 dargestellt genutzt. Die Wärmenutzung für gewerbliche und private Heizung nimmt mit 23 Anlagen dabei den größten Anteil ein, gefolgt von 8 Anlagen mit gartenbaubetrieblicher Nutzung und 3 Anlagen mit Wärmenutzung im landwirtschaftlichen Bereich.

Abb. 4-10 Externe Wärmenutzung der befragten BHKW-Betreiber

Im Rahmen der Befragung hatten die BHKW-Betreiber auch die Möglichkeit sich hinsichtlich wünschenswerter Verbesserungen des EEG für den Bereich flüssige Energieträger zu äußern. Dabei dominierten die Gesuche nach vereinfachten Verfahren und weniger bürokritischem Aufwand sowie einer Vergütung, die an die stark gestiegenen Rohstoffkosten angepasst ist (siehe Abb. 4-11).
Abb. 4-11 Verbesserungswünsche der befragten BHKW-Betreiber hinsichtlich Novellierung des EEG

- einfacheres Verfahren/ weniger Bürokratie (Kosten)
- Vergütung an gestiegene Rohstoffkosten anpassen
- Energiesteuerbefreiung wieder einführen
- Förderung einheimischer Rohstoffe (Raps)
- EEG abschaffen, das wäre ehrlich
- Sonstiges
- k.A.

n= 67

(Mehrfachnennung möglich)

Abb. 4-11 Verbesserungswünsche der befragten BHKW–Betreiber hinsichtlich Novellierung des EEG
5 Effekte Landwirtschaft und Landschaftspflege

5.1 Einleitung

5.1.1 Hintergrund und Zielstellung

5.1.2 Vorgehensweise
Grundlage der folgenden Auswertung stellt die Betreiberbefragung vom Deutschen BiomasseForschungsZentrum (DBFZ) dar. Neben Angaben zum Verfahren und zur Verfahrenstechnik der Biogasanlagen wurden auch Angaben zur Betriebsfläche, zum Substrateinsatz und zu den verschiedenen Einflüssen auf die landwirtschaftliche Produktion abgefragt. In Kapitel 3.1.3 sind die Vorgehensweisen und Darstellungen zur Repräsentativität der Befragung aufgeführt.

Im Vorfeld der Auswertung wurden die Fragebögen auf Plausibilität geprüft und unklare Datensätze von der weiteren Auswertung ausgeschlossen. Unvollständig ausgefüllte Fragebögen sind, soweit möglich, in Einzelbereichen mit einbezogen worden.

Neben den Veränderungen in den Anbaustrukturen werden die Häufigkeit des Substrateinsatzes, die Sachlage der Grünlandflächen und der aktuelle Stand zum Einsatz von Landschaftspflegematerial in Biogasanlagen betrachtet. Eine Auswertung des Substrateinsatzes nach Mengenanteilen erfolgte in Kapitel 3.4.1 und wird in diesem Teil noch einmal flächenbezogen analysiert.

Insgesamt konnten derzeit für die nachfolgenden Betrachtungen 585 Fragebögen ausgewertet werden. Von den 585 ausgewerteten Fragebögen haben im landwirtschaftlichen Sektor (Substrateinsatz/Flächennutzung) 541 Anlagenbetreiber Angaben gemacht. Diese Biogasanlagen weisen eine installierte elektrische Leistung von 200 MWₑ auf. Die durchschnittliche Anlagengröße entspricht
371 kWₑₜ. Das Gesamtfermentervolumen der betrachteten Anlagen beträgt 1 225 439 m³ und ergibt eine mittlere Größe von 2 348 m³ je Biogasanlage, die mit der durchschnittlichen Fermentergröße des Vorjahres vergleichbar ist.

5.2 Energiepflanzenanbau in Deutschland

5.2.1 Flächeneinsatz für die Biogaserzeugung
Zur Auswertung des Flächeneinsatzes für die Biogaserzeugung konnten 542 Fragebögen mit vollständigen plausiblen Angaben in diesem Bereich verwendet werden (Abb. 5-1). Die landwirtschaftliche Nutzfläche aller am Betrieb der Biogasanlagen beteiligten Unternehmen beträgt nach Angaben der Betreiber 210 682 ha. Die Anbaufläche gliedert sich in 153 630 ha Ackerfläche und 34 359 ha Grünland, was einem Grünlandanteil von 16 % entspricht. Von der Gesamtfläche der Anlagenbetreiber werden 64 149 ha Ackerfläche zum Anbau von nachwachsenden Rohstoffen genutzt. Der Aufwuchs von 8 038 ha Grünland kommt in den Biogasanlagen zum Einsatz. Das bedeutet, dass im Mittel 30 % der gesamten Betriebsfläche zur Erzeugung von Substraten für Biogas eingesetzt werden. Der relativ hohe Anteil (der im bundesdeutschen Durchschnitt gerade mal 5 % beträgt) ist durch die ausschließliche Teilnahme von Biogasbetrieben an der Betreiberumfrage zu begründen[11] (Abb. 5-1).

Deutlich ist auch zu erkennen, dass mit steigender Betriebsgröße der Flächenanteil für die Biogasproduktion erkennbar zurückgeht (Abb. 5-2).
Abb. 5-2: Gemittelter Anteil der Fläche für den Substratanbau zum Einsatz in der Biogasanlage an der Gesamtfläche der Betriebe (Betreiberbefragung 2010)

Im Vergleich zur Betreiberbefragung 2009 ist 2010 ein Anstieg von 8% bzw. um 64 149 ha der Anbaufläche für die Biogasproduktion zu verzeichnen, was einen Anteil von 1,2% der LF Deutschlands ergibt. Annähernd 34% der Ackerfläche (Abb. 5-1) der an der DBFZ Betreiberbefragung 2010 beteiligten Betriebe dienen dem Anbau von nachwachsenden Rohstoffen. Dabei wurde nicht zwischen der Ackerfläche für die Belieferung einer Biogasanlage im Fremdbetrieb und der Ackerfläche für den Eigenbetrieb einer Biogasanlage unterschieden.

5.2.2 Substrateinsatz und Anbaufläche

Nach Plausibilitätsprüfung der eingesetzten Substrate und des Flächeneinsatzes (n = 334 Fragebögen) konnte für die detaillierte Auswertung eine Anbaufläche von 73 732 ha herangezogen werden. Vergleicht man den Substrateinsatz der ausgewerteten Betriebe mit der Anbaufläche, die zur Erzeugung der einzelnen Substrate benötigt wird, beansprucht der Maisanbau (MS=Maisilage) etwas mehr als die Hälfte der Anbaufläche, für Getreide hingegen werden nur 14% genutzt, wobei der Anteil im Vergleich zum Vorjahr gesunken ist (Abb. 5-3). Anwelksilage (AWS) wird von 22% der Fläche gewonnen, wobei eine Schnitthäufigkeit von 3 Schnitten pro Jahr angenommen wurde. Der Anteil an Ganzpflanzensilage hat mit 5% leicht zugenommen, während hingegen der Anteil von Corn-Cob-Mix (CCM)/Lieschkolbenschrot (LKS) stark abgenommen hat.
5.2.3 Regionale Unterschiede bei der Substratbereitstellung

Die Agrarstruktur in den einzelnen Bundesländern wirkt deutlich auf die Größe der Biogasanlagen und auch auf die zum Einsatz kommenden Substrate. Als Indikatoren hierfür stehen die mittlere installierte elektrische Leistung, der Maisanteil am Substrat und auch die Verweilzeit, die infolge von hohen Gülleanteilen oft geringer ist (Tabelle 5-1; Abb. 5-4)

So werden im Nordwesten bei mittleren Anlagengrößen von 500 bis 600 kWel trotz hohem Tierbesatz nur 20 bis 30 % Wirtschaftsdünger eingesetzt. Der Maisanteil ist in dieser Region mit deutlich über 60 % sehr hoch.

Abb. 5-3: Massebezogener Substrateinsatz und dafür verwendete Anbaufläche (Betreiberbefragung 2010)
5.2.4 Transportentfernung der Substrate für die Biogaserzeugung

Dieser wird aus den Veredlungsregionen in die Ackerbaugebiete transportiert. Ausgehend von der Nährstoffverwertung ist dies auch in Anbetracht der mittleren Transportentfernung von 43 km eine positive Entwicklung (siehe statistische Auswertung Tabelle 5-2).

Tabelle 5-2: Statistische Auswertung für die Transportentfernungen (in km) von eingesetzten Substraten

<table>
<thead>
<tr>
<th>Substrat</th>
<th>Min</th>
<th>Max</th>
<th>Standardabweichung</th>
<th>Mittelwert</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gülle Rind</td>
<td>0</td>
<td>15</td>
<td>2,61</td>
<td>2,16</td>
<td>1,5</td>
</tr>
<tr>
<td>Gülle Schwein</td>
<td>0</td>
<td>10</td>
<td>2,39</td>
<td>2,05</td>
<td>1,5</td>
</tr>
<tr>
<td>Gülle R+S</td>
<td>0</td>
<td>15</td>
<td>2,78</td>
<td>2,49</td>
<td>2</td>
</tr>
<tr>
<td>Rindermist</td>
<td>0</td>
<td>5</td>
<td>3,62</td>
<td>3,06</td>
<td>2</td>
</tr>
<tr>
<td>Schweinemist</td>
<td>0</td>
<td>5</td>
<td>2,26</td>
<td>1,7</td>
<td>0,9</td>
</tr>
<tr>
<td>Mist R+S</td>
<td>0</td>
<td>5</td>
<td>2,13</td>
<td>2,63</td>
<td>3</td>
</tr>
<tr>
<td>HTK</td>
<td>0,1</td>
<td>300</td>
<td>75</td>
<td>43,8</td>
<td>6</td>
</tr>
<tr>
<td>MS</td>
<td>0</td>
<td>50</td>
<td>5,98</td>
<td>5,09</td>
<td>4</td>
</tr>
<tr>
<td>Getreide</td>
<td>0</td>
<td>200</td>
<td>31,08</td>
<td>3,61</td>
<td>4</td>
</tr>
<tr>
<td>AWS</td>
<td>0</td>
<td>20</td>
<td>3,05</td>
<td>3,61</td>
<td>3</td>
</tr>
<tr>
<td>GPS</td>
<td>0</td>
<td>20</td>
<td>3,44</td>
<td>4,33</td>
<td>3</td>
</tr>
<tr>
<td>Sonstige</td>
<td>1</td>
<td>107,5</td>
<td>34</td>
<td>19,5</td>
<td>3</td>
</tr>
</tbody>
</table>

Abb. 5-5: Transportentfernung für NawaRo und Wirtschaftsdünger (DBFZ Betreiberbefragung 2010), n=334
5.2.5 Verwertung und Aufbereitung von Gärresten

Die Verwertung der Gärreste erfolgt in 78 % der Betriebe intern auf den eigenen Flächen. Nur 22 % der Gärreste gelangen auf betriebsfremde Flächen (Abb. 5-6.). Dies lässt sich durch den relativ hohen Feuchtegehalt der Gärreste und somit hohen Transportkosten erklären. Es ist auch festzustellen, dass der Großteil der BGA eine sinnvolle Gärrestverwertung im eigenen Betrieb bzw. in den Substratzulieferbetrieben durchführt und ein ausreichendes Flächenpotenzial hat. Zudem wirkt sich die Gärrestausbringung positiv auf die Humusbilanz aus.

Abb. 5-6: Flächenanteil der Gärrestausbringung im Betrieb und extern (DBFZ Betreiberbefragung 2010)
5.3 Häufigkeitsverteilung des Substrateinsatzes

Die Verteilung des Substrateinsatzes bezogen auf die eingesetzten Mengen und den Energiegehalt ist in Kapitel 3.4.1 dargestellt. Nach wie vor spielen der Einsatz von tierischen Exkrementen (Gülle, Festmist) und nachwachsenden Rohstoffen die größte Rolle am Substrateinsatz in Biogasanlagen.

5.3.1 Einsatzhäufigkeiten in der Substratgruppe nachwachsende Rohstoffe

In Hinblick auf die Häufigkeit des Substrateinsatzes wurden sämtliche Anlagen, die NawaRo einsetzen, mit einbezogen. Die Einsatzhäufigkeit beschreibt die Anzahl der Betriebe, die Mais, Anwelksilage, Getreide, GPS, Zwischenfrucht, Zuckerrübe eingesetzt haben. Dabei handelt es sich um die Anzahl der Anlagen in den Betreiberbefragungen, die diese Substrate einsetzen. Im Vergleich zum Vorjahr nahm die Einsatzhäufigkeit von Mais um 3 % und die der Zuckerrübe um 3 % ab, während bei allen anderen Substraten eine Steigerung in der Einsatzhäufigkeit in der Biogasanlage zu verzeichnen war (Abb. 5-8).

Abb. 5-8: Relative Einsatzhäufigkeit von nachwachsenden Rohstoffen nach Anzahl des Substrateinsatzes der Biogasanlagen 2008-2010 (DBFZ Betreiberbefragung 2008-2010)

12Die N_{min}-Werte geben den Gehalt des pflanzenverfügbaren Stickstoffs im Boden an.
5.3.2 Einsatzhäufigkeiten in der Substratgruppe Wirtschaftsdünger

Die Auswertung aller Wirtschaftsdünger (WD) nutzenden Anlagen erfolgt in diesem Bericht untergliedert nach Tierarten (Abb. 5-9). In den Fällen, in denen die Anlagenbetreiber bei der Beantwortung der Fragebögen keine Unterteilung vorgenommen haben, sind die Substrate; die als Mischung Rind und Schwein (R + S) angegeben sind. An erster Stelle steht die Rindergülle mit 58 % Einsatzhäufigkeit, gefolgt von Mischgülle mit 16 % und Schweinegülle mit 15%. Die Einsatzhäufigkeit von Hühnertrockenkot (HTK) mit 5 % und Stallmist (4 %) ist im Vergleich zum Vorjahr deutlich gesunken.

Abb. 5-9: Massebezogene Einsatzhäufigkeit der Substratgruppe Wirtschaftsdünger¹¹ in Biogasanlagen im Mittel (DBFZ Betreiberbefragung 2010) n=282

¹¹ Trockensubstanzgehalte: Rindergülle 6-11%, Schweinegülle 3-9%; Stallmist Rind 12-25%; Stallmist Schwein 20-25% [4]
Einsatzmenge auf 112 % beläuft, hier sind aufgrund fehlender Veredlungsbetriebe mehr Importe zu verzeichnen (siehe Absatz 5.2.3).

5.3.3 Landwirtschaft und Biomethaneinspeisung

Biomethaneinspeiseanlagen werden vorrangig als Großanlagen errichtet. Im EEG 2009 sind bei den Anlagengrößen 350 m³/h bzw. 700 m³/h Rohgas unterschiedliche Boni verankert. Von den erfassten Einspeiseanlagen arbeiten 40 % im Bereich bis 350 m³/h Biogas (700 m³/h Rohgas). In dieser Gruppe sind Anlagen in allen Leistungsbereichen anzutreffen. 45 % der Einspeiseanlagen arbeiten im Bereich zwischen 350 und 700 m³/h. 15 % der Anlagen verzichten als Großanlagen mit Kapazitäten bis 10 000 m³/h auf den EEG-Bonus für die Gaseinspeisung.

Abb. 5-10: Rohgasproduktion der erfassten Einspeiseanlagen

Abb. 5-11: Substratzusammensetzung landwirtschaftlicher Einspeiseanlagen

Einspeiseanlagen bis 700 m³/h Rohgas (= 350 m³/h Biogas = 1,4 MWel) sind hinsichtlich Substratbedarf und Gärrestverwertung mit großen Biogasanlagen vergleichbar. Der Flächenbedarf ist mit ca. 650 ha Maisanbaufläche oft noch ohne deutliche Rückwirkungen auf die Landwirtschaft bereitstellbar, wenn diese Anlagen in die bestehenden Regionen mit geringem Tierbesatz (geringer Maisanbau) und bestehendem BGA-Besatz integriert werden. So führt z. B. eine Biogasanlagendichte von 0,1 kW/ha (Durchschnitt Deutschland 2009) bei 80 % Gaserzeugung aus Maissilage zu einer Erhöhung des Maisanbaus über das durch die vorhandene Tierhaltung bedingte Niveau um 4 %.

Größere Biomethaneinspeiseanlagen beeinflussen die Agrarstruktur deutlich. Bedingt durch die vermehrten Transportaufwendungen für das Substrat ist zu erwarten, dass deutlich Thünenische Ringe mit vermehrtem Maisanbau um die Anlagen entstehen.

So erfordert eine Einspeiseanlage mit 10 000 m³/h Rohgas z. B. eine Maisanbaufläche von ca. 10 000 ha. Bei einem mittleren Ackerflächenanteil von 30 % an der Fläche und einem Maisanteil für Biogas an der Fruchtfolge von 25 % ergibt sich ein Einzugsbereich von über 150 000 ha mit entsprechend hohen Transportvolumen und -aufwendungen. Von den Anlagenbetreibern solcher großen Anlagen wird ein Einzugsbereich von bis 75 km angegeben.

5.3.4 Substratkosten
Die Ermittlung der Substratkosten erfolgt auf der Grundlage der Angaben in den Fragebögen im Rahmen der DBFZ Betreiberbefragung. Die angegebenen Kosten stellen daher speziell bei Silagen die in der

Die Kosten für den Eigenanbau sind in Tabelle 5-3 angegeben. Im Durchschnitt liegen die spezifischen Substratkosten pro m³ Methan bei ungefähr 0,34 €/m³ CH₄ und sind damit seit dem Vorjahr um 5% gestiegen. Dies könnte mit einer verstärkten Nachfrage durch den weiteren Zubau von Biogasanlagen zu begründen sein. Besonders hoch sind mit 100 €/t_FM die spezifischen Substratkosten für Lieschkolbenschet (LKS) und Corn-Cob-Mix (CCM). Die Erntefrischmasse reduziert sich im Vergleich zu Ganzpflanzensilage um ein Drittel [1], da nur Pflanzenteile genutzt werden. Zudem ergeben sich starke Schwankungen im Trockenmassegehalt, die das Ergebnis verfälschen können.

Tabelle 5-3: Substratkosten eigener Anbau nach Methangehalt (DBFZ Betreiberbefragung 2010), n=334

<table>
<thead>
<tr>
<th>Substratart</th>
<th>Kosten [€/tFM]</th>
<th>Methanertrag [m³/tFM] nach KTBL</th>
<th>spezifische Substratkosten [€/m³CH₄]</th>
<th>Einsatzhäufigkeit [in %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mais/-silage</td>
<td>31</td>
<td>106</td>
<td>0,29</td>
<td>54,5</td>
</tr>
<tr>
<td>Getreide</td>
<td>124</td>
<td>320</td>
<td>0,39</td>
<td>20,4</td>
</tr>
<tr>
<td>Gras Grünland</td>
<td>19</td>
<td>100</td>
<td>0,19</td>
<td>1,8</td>
</tr>
<tr>
<td>Gras Ackerland</td>
<td>16</td>
<td>86</td>
<td>0,18</td>
<td>0,9</td>
</tr>
<tr>
<td>Gras Acker+GL</td>
<td>27</td>
<td>86</td>
<td>0,32</td>
<td>0,9</td>
</tr>
<tr>
<td>AWS</td>
<td>27</td>
<td>100</td>
<td>0,27</td>
<td>33,8</td>
</tr>
<tr>
<td>GPS</td>
<td>31</td>
<td>103</td>
<td>0,30</td>
<td>21,3</td>
</tr>
<tr>
<td>Zwischenfrucht 14</td>
<td>26</td>
<td>72</td>
<td>0,36</td>
<td>13,2</td>
</tr>
<tr>
<td>CCM 15</td>
<td>105</td>
<td>242</td>
<td>0,43</td>
<td>1,5</td>
</tr>
<tr>
<td>LKS</td>
<td>100</td>
<td>230</td>
<td>0,43</td>
<td>0,3</td>
</tr>
<tr>
<td>Zuckerrüben</td>
<td>40</td>
<td>75</td>
<td>0,53</td>
<td>0,3</td>
</tr>
<tr>
<td>Sonstiges</td>
<td>38</td>
<td>k.A.</td>
<td>k.A.</td>
<td>6,3</td>
</tr>
</tbody>
</table>

Beim externen Zukauf von Substraten ergeben sich mit 0,3 €/m³ CH₄ durchschnittlich etwas niedrigere spezifische Substratkosten (Tabelle 5-4). Besonders auffällig sind die um 7 €ct/kWh höheren spez. Substratkosten von Ganzpflanzensilage im eigenen Anbau. Für Lieschkolbenschrot und Corn-Cob-Mix liegt die Differenz bei 13 €ct/m³ CH₄ zwischen Eigenanbau und Fremdanbau, was aber wahrscheinlich über schwankende Trockenmassegehalte zu begründen ist. Der Preis für Zwischenfrüchte ist sehr hoch, wobei davon ausgegangen werden kann, dass der Wert der Substrate beim eigenen Anbau höher bewertet wird als beim Zukauf.

14 Vorwiegend Grünroggen
15 Preis kann durch Bezug auf Frischmasse verfälscht sein, da es sich um Güter mit schwankenden Trockenmassegehalten handelt (Gilt auch für Lieschkolbenschrot)
Tabelle 5-4: Substratkosten externer Zukauf nach Methangehalt (DBFZ Betreiberbefragung 2010), n=334

<table>
<thead>
<tr>
<th>Substratart</th>
<th>Kosten [€/tFM]</th>
<th>Methanertrag [m³/t] nach KTBL</th>
<th>spezifische Substratkosten [€/m³CH₄]</th>
<th>Einsatzhäufigkeit [in %]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mais/-silage</td>
<td>32</td>
<td>106</td>
<td>0,30</td>
<td>45</td>
</tr>
<tr>
<td>Getreide</td>
<td>224</td>
<td>320</td>
<td>0,36</td>
<td>13,5</td>
</tr>
<tr>
<td>Gras GL</td>
<td>22</td>
<td>100</td>
<td>0,22</td>
<td>0,9</td>
</tr>
<tr>
<td>Gras AF</td>
<td>k.A.</td>
<td>86</td>
<td>k.A.</td>
<td></td>
</tr>
<tr>
<td>Gras GL+AF</td>
<td>16</td>
<td>86</td>
<td>0,18</td>
<td>0,6</td>
</tr>
<tr>
<td>AWS</td>
<td>28</td>
<td>100</td>
<td>0,28</td>
<td>9,6</td>
</tr>
<tr>
<td>GPS</td>
<td>38</td>
<td>103</td>
<td>0,37</td>
<td>7,8</td>
</tr>
<tr>
<td>Zwischenfrucht¹</td>
<td>24</td>
<td>72</td>
<td>0,33</td>
<td>2,1</td>
</tr>
<tr>
<td>CCM</td>
<td>143</td>
<td>242</td>
<td>0,59</td>
<td>1,2</td>
</tr>
<tr>
<td>LKS</td>
<td>70</td>
<td>230</td>
<td>0,30</td>
<td>0,3</td>
</tr>
<tr>
<td>Zuckerrüben</td>
<td>k.A.</td>
<td>75</td>
<td>k.A.</td>
<td></td>
</tr>
<tr>
<td>Sonstiges</td>
<td>51</td>
<td>k.A.</td>
<td>k.A.</td>
<td>0,9</td>
</tr>
</tbody>
</table>

5.4 Grünland

5.4.1 Entwicklung von Dauergrünland in Deutschland

Im Zusammenhang mit der Entwicklung der Agrarpreise und der Verknappung der Fläche, aber auch durch die Verlagerung und Konzentration der Tierhaltung wird ein zunehmender Verlust an Dauergrünland festgestellt. Der zunehmende Energiepflanzenanbau und vor allem der zunehmende Maisanbau wirken in Veredlungsregionen zusätzlich auf die Flächenverknappung, so dass ein Trend zum Grünlandumbruch besonders in diesen Regionen auszuweisen ist. Der Dauergrünlandanteil an der landwirtschaftlichen Nutzfläche liegt derzeit in Deutschland bei 29 % d. h. eine Gesamtfläche von 4 783 853 ha, wobei er sich im Vergleich zu 2009 im Durchschnitt um 4 % verringert hat (Abb. 5-12).

Weitere Ursachen können auch in der Aussagekraft der Statistik liegen. Die Erfassung der Dauergrünlandflächen basiert auf den gemeldeten Flächen für die GAP-Flächenförderung. Demnach werden Flächen, für die kein Antrag gestellt wurde, auch nicht berücksichtigt, obwohl sie noch als Grünland existieren. Auch ist die auf Basis der Antragsdaten ermittelte landwirtschaftliche Gesamtfläche größer geworden bzw. hat weniger stark abgenommen. Dies lässt den Anteil an Dauergrünland abnehmen, obwohl kein tatsächlicher Verlust stattfindet, also die Flächen nicht umgemeldet wurden oder unangemeldet umgenutzt wurden. Dies kann auch eine neu eingesäte Grünlandfläche sein, die nicht mehr
als Ackerfläche genutzt wird. Auch 2010 ist im Zuge des „Health Checks“ der gemeinsamen Agrarpolitik und der damit verbundenen Mindestbeihilfefläche mit einem statistischen Rückgang der Dauergrünlandfläche zu rechnen. Betriebe, die weniger als 1 ha bewirtschaften, können keinen Beihilfeantrag mehr stellen und der größte Teil dieser aus der Statistik fallenden Flächen wird wiederum Dauergrünland sein [6].

Somit lassen sich aus der alleinigen Betrachtung der Grünlandverluste auf Grundlage der InVeKos16 -Daten keine Rückschlüsse ziehen. Es bleibt unklar, ob die Flächen einer anderen Nutzung zugeführt wurden oder ob sie lediglich nicht mehr als Förderfläche gemeldet werden.

5.4.2 Grünlandnutzung für Biogasanlagen

Die 541 Anlagenbetreiber, die im Fragebogen plausible Angaben zur Betriebsfläche gemacht haben, bewirtschaften insgesamt 210 682 ha LF. Davon werden 64 149 ha zur Nutzung in der Biogasanlage verwendet. Das macht einen Anteil von 5 % an der gesamten Grünlandfläche und knapp 4 % der gesamten zur Erzeugung von Biomasse genutzten Fläche der befragten Betriebe aus (Abb. 5-13). Mit hoher Wahrscheinlichkeit ist für die Flächen keine vollständige Nutzung durch Tierhaltung mehr gegeben, sodass besonders die dritten und vierten Aufwuchse in Biogasanlagen eingesetzt werden. Die Abfuhr und Nutzung des Grünschnitts trägt zu einer Erhaltung der Grünlandqualität dieser Flächen bei.

16 Integriertes Verwaltungs- und Kontrollsystem
Um genauer differenzieren zu können, wurde die Abfrage in Grünland und Ackerland unterteilt. 27 % der Betreiber gaben eine Nutzung des Ackerlandes für Biogas an, nur 4 % wurden hingegen für Grünland genutzt. 69 % der Anbaufläche wurden in den Betrieben anderweitig genutzt (Abb. 5-13). Die Gewinnung von Substraten vom Acker überwiegt den Anteil der Gewinnung von Substraten vom Grünland.

Abb. 5-13: Aufteilung nach Anbauflächen für eingesetzte Substrate anteilig an der Gesamtanbaufläche der Betriebe (DBFZ Betreiberbefragung 2010) n = 541

5.5 Politische Handlungsnotwendigkeit für Grünlandflächen

5.5.1 Landschaftspflegeflächen und Biotopflächen

Landschaftspflegeflächen um Flächen mit geringer Flächenleistung und geringem Eiweißgehalt (bezogen auf den Flächenertrag) handelt, reicht der Energiegehalt nicht aus, um die entsprechende Stromleistungsmenge zu gewährleisten. Wirtschaftliche und technische Probleme, die bei großen Mengen von Material mit hoher Trockensubstanz entstehen, führten dazu, dass der Bonus nicht genutzt wurde und somit die mit dem Bonus einhergehenden Zielvorstellungen nicht erreicht wurden. So konnte weder die Zunahme des Maisanbaus noch ein weiterer Grünlandumbruch verhindert werden.

5.6 Gesamtbewertung und Schlussfolgerungen

Anhand der Betreiberumfrage 2010 wird deutlich, dass die Agarstruktur auf die Substratzusammensetzung in den Biogasanlagen einwirkt. Im Süden mit seiner kleinräumig strukturierten Landwirtschaft ist die Vielfalt der eingesetzten Substrate am größten. Tierbetriebe mit geringen Tierzahlen bewirken einen geringen Gülleeinguss. Im Osten ist durch die großräumig
struktureierte Landwirtschaft ein hoher Wirtschaftsdüngeranteil an der Substratzusammensetzung vorhanden. Im Nordwesten ist der Maisanteil (bis 60 %) an der Substratzusammensetzung trotz einer Häufung an Veredelungsgebieten relativ hoch.

Landschaftspflegematerial wird aus unterschiedlichsten Gründen nur gering eingesetzt. Mangelnder Energiegehalt und geringer Flächenertrag behindern die wirtschaftliche Nutzung. Technische Probleme, die durch den hohen Trockensubstanzgehalt und die langfaserige Struktur zustande kommen, konnten bisher nur ansatzweise gelöst werden [32].

Zusätzlich treten immer wieder Fragen bei der Definition von Landschaftspflegematerial auf. Es ist demnach weiterhin eine Präzisierung des Landschaftspflegebegriffs erforderlich. Eine Senkung des 50 %

17 GV = Großvieheinheiten, die Grenze für gute fachliche Praxis liegt bei 2 GV/ha
Anteils oder ein angepasster NawaRo-Bonus könnten den Einsatzumfang ggf. deutlich steigern und somit bisher ungenutzte Biomasse einer sinnvollen Verwertung zuführen.
6 Zusammenfassung

Zusammenfassend zeigt sich in Abb. 6-1, dass die Bereitstellung von Strom aus Bioenergieanlagen im Jahr 2010 mit etwa 25,7 TWhel18 einen bedeutenden Anteil an der Stromerzeugung in Deutschland leisten konnte19. Der größte Anteil an der Stromerzeugung aus Biomasse ist auf die Biogaserzeugung und -nutzung sowie auf den Einsatz fester Biomasse zurückzuführen.

18 Stromerzeugung aus Biomasse ohne die Berücksichtigung von Biomethanlagen, Anlagen der Papier- und Zellstoffindustrie, Holzvergasern und Kleinst-KWK-Anlagen
19 Laut der Jahreszahlen Erneuerbare Energien 2010 des BEE (02/2011) wuchs der Stromverbrauch aus biogenen Rohstoffen von 5,4% in 2009 auf knapp 6% im Jahr 2010, was 34,3 % der gesamten genutzten Strommenge aus Erneuerbaren Energien entspricht. Insbesondere der Ausbau von Biogasanlagen trug zu dieser Entwicklung bei.
Zusammenfassung

Abb. 6-1: Verteilung der Stromerzeugung aus Biomasse in 2010

Die Entwicklung der Biomassenutzung seit der Einführung des EEG bis einschließlich 2010 hinsichtlich der installierten elektrischen Leistung (MWel) und der Anlagenanzahl im Bereich der festen, flüssigen und gasförmigen Bioenergieträger zeigt Abb. 6-2.

Abb. 6-2: Entwicklung der installierten Anlagenleistung sowie Anlagenanzahl zur Stromerzeugung aus Biomasse 2000-2010.
Sowohl die aktuelle Entwicklung als auch die erwarteten Trends zeigen, dass das EEG in der heute gültigen Form zur Diversifizierung der in Bioenergieanlagen eingesetzten Rohmaterialien sowie der entsprechenden Konversionstechnologien – bei einer insgesamt deutlich zu beobachtenden Marktausweitung – beiträgt. Dabei stellen sich aber auf der Basis des gültigen energiewirtschaftlichen Rahmens die Perspektiven für die festen, flüssigen und gasförmigen Bioenergieträger unterschiedlich dar.

20 Die Abschätzung der Daten zum Bioenergieanlagenbestand sowie der realisierten Stromerzeugung resultieren aus dem zum Zeitpunkt der Berichtserstellung bekannten Wissenstand. Es wird erwartet, dass im Laufe der Folgemonate voraussichtlich aktualisierte Daten zur Verfügung stehen, beispielsweise von einzelnen Bundesländern. Diese Daten werden bei der weiteren Berichtserstattung einbezogen und fortlaufend aktualisiert.

21 EEG-fähige Biomasse(heiz)kraftwerke zum Ende des Jahres 2010 einbezogen (ohne Berücksichtigung von Papier- und Zellstoffindustrie, Kleinst-KWK-Anlagen < 10 kWel und Holzvergasern)

22 ohne Berücksichtigung der Anlagen und Stromeinspeisung aus Biomethanlagen

23 Betriebsstunden Pflanzenöl-BHKW emissionsspezifisch zugrunde gelegt

24 Wärmenutzung für Biogas bedeutet extern genutzte Wärme (d. h. keine Fermenterbeheizung), nach Abzug des Eigenwärmebedarfs und unter der Annahme, dass 50 % der dann noch verfügbaren Wärme genutzt werden.

25 Anteil der genutzten Wärme für pflanzenölbetriebene BHKW mit 80 % angenommen

Zusammenfassung

Abbildungsverzeichnis

Abb. 2-1: Anlagenbestand & installierte elektrische Leistung der in Betrieb befindlichen Biomasse(heiz)kraftwerke (Stand Ende 2010 – ohne Papier-/ Zellstoffindustrie, ohne Kleinst-KWK-Anlagen < 10 kWel und ohne Holzvergaser) ... 9

Abb. 2-2: Aufteilung der Biomasse(heiz)kraftwerke nach Anlagenanzahl (links) und Anlagenleistung (rechts) .. 11

Abb. 2-3: Regionale Verteilung von Anlagenbestand und install. elektr. Leistung .. 13

Abb. 2-4: Regionale Verteilung von Anlagenzubau und install. elektr. Leistung für das Jahr 2010 ... 14

Abb. 2-5: Standort, Leistungs- und Brennstoffklasse der Biomasse(heiz)kraftwerke in Deutschland (ohne Kleinst-KWK-Anlagen < 10 kWel und ohne Holzvergaser) .. 16

Abb. 2-6: Betreiberformen der Biomasse(heiz)kraftwerke nach Anlagenzahl (links) und inst. elek. Leistung (rechts) ... 18

Abb. 2-7: Betreiberformen der 2010 in Betrieb genommenen Biomasse(heiz)kraftwerke nach Anlagenzahl (links) und inst. elek. Leistung (rechts) .. 19

Abb. 2-8: Zubau von ORC- und Dampfturbinenanlagen 2000 bis 2010 .. 21

Abb. 2-9: Brennstoffeinsatz in Biomasse(heiz)kraftwerken nach Anlagenzahl (links) und inst. elek. Leistung (rechts) .. 23

Abb. 2-10: Erwarteter Brennstoffeinsatz von naturlbelassenem Holz .. 24

Abb. 2-11: Erwarteter Brennstoffeinsatz von Altholz bis AII ... 24

Abb. 2-12: Erwarteter Brennstoffeinsatz von Altholz bis AIV ... 25

Abb. 2-13: Erwarteter Brennstoffeinsatz von Mischtsortimenten .. 25

Abb. 2-14: Preisentwicklung der Durchschnittspreise von Altholzsormenten [26]... 27

Abb. 2-16: Ankaufspreise für Verwerter von NawaRo-Holz [24], [25] ... 29

Abb. 3-1: Biogasanlagenentwicklung in Deutschland (Anlagenzahl differenziert nach Leistungsklassen und installierter elektrischer Anlagenleistung in MWel), ohne Abbildung von Biogasaufbereitungsanlagen, Deponie- und Klärgasanlagen .. 37

Abb. 3-2: Größenklassenverteilung des Anlagenzubaus 2008-2010... 38

Abb. 3-3: Installierte Biogasanlagenleistung je ha landwirtschaftliche Fläche, Bezugssebene: Bundesland, [56] .. 40

Abb. 3-4: Verteilung der in Betrieb befindlichen Biogasanlagen in Deutschland; Bezugssebene: Postleitzahl Stand 01/2011; Biogasdatenbank DBFZ) [1],[37],[42],[43],[46]... 41

Abb. 3-5: Anlagenzahl, gesamte und durchschnittliche elektrische Anlagenleistung in Deutschland zum Stand 12/2010, Bezugssebene: Landkreise; Biogasdatenbank DBFZ, [1],[37],[42],[43],[46] ... 42

Abb. 3-6: installierte elektrische Anlagenleistung bezogen auf 1 000 ha landwirtschaftliche Fläche, Bezugssebene: Landkreis ... 43

Abb. 3-7: Standorte der Biogasaufbereitungsanlagen in Deutschland mit Angabe des Status (in Betrieb, in Bau, in Planung), Bezugssebene: Postleitzahl Stand 12/2010 ... 45

Abb. 3-8: Betreiberbefragung 2010 - Anlagenbestand und Rücklauf, Bezugssebene: Postleitzahl 49

116
Zusammenfassung

Abb. 3-9: Rechtsform der Betreiberunternehmen von Biogasanlagen (Betreiberbefragung DBFZ 2010) .. 50
Abb. 3-10: Verteilung der Art der Anlagengenehmigung bei Biogasanlagen (Betreiberbefragung DBFZ 2010) .. 51
Abb. 3-11: relative Häufigkeit der Vergütungsstruktur der Biogasanlagen (Betreiberbefragung DBFZ 2010) .. 52
Abb. 3-12: Inanspruchnahme des KWK-Bonus differenziert nach KWK-Bonus 2004 und KWK-Bonus 2009 (Betreiberbefragung DBFZ 2010); A - Anlagenbestand, B – Inbetriebnahme vor 2009 .. 55
Abb. 3-15: Verteilung des Eigenstrombedarfs in Abhängigkeit von der installierten Anlagenleistung (Betreiberbefragung DBFZ 2010) .. 60
Abb. 3-16: Verteilung des Anteils der externen Wärmenutzung bezogen auf die Rückmeldungen (Betreiberbefragung DBFZ 2010) .. 63
Abb. 3-17: Häufigkeit der Wärmenutzung, absolut und relativ (Betreiberbefragung DBFZ 2010) 65
Abb. 3-18: Verteilung nach Art der Trocknungsprozesse (Betreiberbefragung DBFZ 2010) 65
Abb. 3-19: Prozessführung der Biogasanlagen (nach Definition "Trockenfermentation" EEG 2004) (Betreiberbefragung DBFZ 2010) .. 67
Abb. 3-20: Verfügbarkeit einer Gasfackel (Betreiberbefragung DBFZ 2010); A – Anlagenbestand, B – Neuanlagen (Inbetriebnahme 2010, 2011) .. 69
Abb. 3-22: Verteilung der Ausfallzeiten bezogen auf die Rückmeldungen (Betreiberbefragung DBFZ 2010) .. 73
Abb. 3-23: Massebezogener Substrateinsatz in Biogasanlagen (Betreiberbefragung DBFZ 2010) 75
Abb. 3-24: Energiebezogener Substrateinsatz in Biogasanlagen (Betreiberbefragung DBFZ 2010) Bezugsgröße: spezifische Methanerträge der eingesetzten Substrate .. 76
Abb. 3-25: veränderter Gülleeinsatz in Biogasanlagen seit Neufassung des EEG 2009 bezogen auf die Rückmeldungen (Betreiberbefragung DBFZ 2010) .. 78
Abb. 3-26: Massebezogener Substrateinsatz nachwachsender Rohstoffe in Biogasanlagen (Betreiberbefragung DBFZ 2010) .. 78
Abb. 4-1 Entwicklung von Anlagenzahl und installierter elektrischer Leistung von Pflanzenöl-BHKW seit 2004 .. 81
Abb. 4-2 Anteil der registrierten Anlagen nach Leistungsklassen entsprechend Anzahl und elektrischer Leistung [12] .. 81
Abb. 4-3 Verteilung des eingesetzten Pflanzenöls bei den befragten Pöl-BHKW-Betreibern nach Anlagenzahl und installierter elektrischer Leistung in MW .. 83
Abb. 4-4 Entwicklung der Preise für Pflanzenölraffinate in Deutschland und Europa 2010/2011 [1] 83
Abb. 4-5 Entwicklung der Pflanzenölpreise in Deutschland und Europa 2007-2011 [37] 84
Abb. 4-6 Mehrkosten in €/t für als nachhaltig zertifiziertes Raps- und Palmöl (Umfrage Pöl-BHKW-Betreiber) .. 85
Zusammenfassung

Abb. 4-7: Leistungsklassen der BHKWs der Befragung nach Anzahl und installierter elektrischer Leistung

Abb. 4-8: Status der BHKWs der Befragung nach installierter elektrischer Leistung in MW sowie der bei der BLE registrierten installierten elektrischen Leistung in den Leistungsklassen [12]

Abb. 4-9: Anzahl der befragten BHKW-Betreiber mit Bonuszahlungen

Abb. 4-10: Externe Wärmenutzung der befragten BHKW-Betreiber

Abb. 4-11: Verbesserungswünsche der befragten BHKW-Betreiber hinsichtlich Novellierung des EEG

Abb. 5-1: Betriebsfläche nach Art der Nutzung (DBFZ Betreiberbefragung 2010)

Abb. 5-2: Gemittelter Anteil der Fläche für den Substratanbau zum Einsatz in der Biogasanlage an der Gesamtfläche der Betriebe (Betreiberbefragung 2010)

Abb. 5-3: Massebezogener Substrateinsatz und dafür verwendete Anbaufläche (Betreiberbefragung 2010)

Abb. 5-4: Mittlerer Substrateinsatz in den Biogasregionen

Abb. 5-5: Transportentfernung für NawaRo und Wirtschaftsdünger (DBFZ Betreiberbefragung 2010), n=334

Abb. 5-6: Flächenanteil der Gärrestausbringung im Betrieb und extern (DBFZ Betreiberbefragung 2010)

Abb. 5-7: Prozentuale Verteilung der Gärrestverwertung bzw. -aufbereitung auf die Betriebsgröße (nach DBFZ Betreiberbefragung 2010)

Abb. 5-8: Relative Einsatzhäufigkeit von nachwachsenden Rohstoffen nach Anzahl des Substrateinsatzes der Biogasanlagen 2008-2010 (DBFZ Betreiberbefragung 2008-2010)

Abb. 5-9: Massebezogene Einsatzhäufigkeit der Substratgruppe Wirtschaftsdünger in Biogasanlagen im Mittel (DBFZ Betreiberbefragung 2010), n=282

Abb. 5-10: Rohgasproduktion der erfassten Einspeiseanlagen

Abb. 5-11: Substratzusammensetzung landwirtschaftlicher Einspeiseanlagen

Abb. 5-13: Aufteilung nach Anbauflächen für eingesetzte Substrate anteilig an der Gesamtanbaufläche der Betriebe (DBFZ Betreiberbefragung 2010), n=541

Abb. 5-14: Anzahl der Betriebe, die eine Nutzungsänderung der Grünlandfläche vornahmen. Anzahl der Nennungen (DBFZ Betreiberbefragung 2010), n=495

Abb. 6-1: Verteilung der Stromerzeugung aus Biomasse in 2010

Abb. 6-2: Entwicklung der installierten Anlagenleistung sowie Anlagenanzahl zur Stromerzeugung aus Biomasse 2000-2010.
Tabellenverzeichnis

Tabelle 2-1:	Regionale Verteilung der Biomasse(heiz)kraftwerke	12
Tabelle 2-2:	Abschätzung des Anlagenzubaus 2010	14
Tabelle 2-3:	Entwicklung des Anlagenbestandes von Holzvergasungsanlagen in Deutschland	30
Tabelle 2-4:	Übersicht der Biomasseheizkraftwerke der Papier- und Zellstoffindustrie	34
Tabelle 3-1:	Verteilung der in Betrieb befindlichen Biogasanlagen und der installierten elektrischen Anlagenleistung in Deutschland nach Bundesländern (Befragung der Länderinstitutionen 2011, Schätzungen DBFZ) [1],[33],[37],[42],[43],[44],[46],[48]	39
Tabelle 3-2:	Verteilung der in Betrieb, Bau/Planung befindlichen Biogasaufbereitungs- und Einspeiseanlagen und der installierten Aufbereitungskapazität in Deutschland nach Bundesländern	44
Tabelle 3-3:	Rücklauf Betreiberbefragung 2010/11 und Anteil am Anlagenbestand je Bundesland	47
Tabelle 3-4:	Rücklauf der Betreiberbefragung – Größenklassenverteilung und Anteil am Gesamtanlagenbestand	48
Tabelle 3-5:	Inanspruchnahme von Boni sowie der Vergütungserhöhung für Emissionsminderung neben der Grundvergütung für Biogasanlagen (Betreiberbefragung DBFZ 2010)	53
Tabelle 3-7:	Inanspruchnahme des Güllebonus bezogen auf die installierte elektrische Anlagenleistung (Betreiberbefragung DBFZ 2010)	55
Tabelle 3-8:	Inanspruchnahme der Vergütungserhöhung für Emissionsminderung bezogen auf die Anlagengröße (Betreiberbefragung DBFZ 2010)	57
Tabelle 3-9:	Mittlere Betriebsstunden- und Volllaststundenzahl sowie Standardabweichung und Median (Betreiberbefragung DBFZ 2010)	59
Tabelle 3-10:	mittlere Betriebsstunden- und Volllaststundenzahl, Standardabweichung und Median in Abhängigkeit von dem Zeitpunkt der Inbetriebnahme der Anlage (Betreiberbefragung DBFZ 2010)	60
Tabelle 3-11:	Mittlerer Eigenstrombedarf und Standardabweichung in Abhängigkeit von der installierten elektrischen Anlagenleistung (Betreiberbefragung DBFZ 2010)	61
Tabelle 3-12:	Mittlerer Eigenwärmebedarf und Standardabweichung in Abhängigkeit von der installierten elektrischen Anlagenleistung (Betreiberbefragung DBFZ 2010)	62
Tabelle 3-13:	Mittlerer externer Wärmenutzungsgrad und Standardabweichung in Abhängigkeit von der installierten elektrischen Anlagenleistung (Betreiberbefragung DBFZ 2010)	64
Tabelle 3-14:	Einsatzhäufigkeit der Verfahren zur Gasreinigung/-entschwefelung (Betreiberbefragung DBFZ 2010)	67
Tabelle 3-15:	Verfügbarkeit Abgasreinigungsverfahren an Biogasanlagen (Betreiberbefragung DBFZ 2010)	69
Tabelle 3-16:	Verfügbarkeit einer Gasfackel und Differenzierung nach Art der Gasfackel (stationär, mobil) bezogen auf die installierte elektrische Anlagenleistung	70
Tabelle 3-17:	mittleres Gärrestlagervolumen, Standardabweichung und Median bezogen auf die installierte elektrische Anlagenleistung	71
Tabelle 3-18:	Verteilung der Ursachen von Ausfallzeiten (Betreiberbefragung DBFZ 2010)	72
Tabelle 3-19: mittlerer Substratmix in Biogasanlagen bezogen auf die installierte elektrische Anlagenleistung (Betreiberbefragung DBFZ 2010) ... 76

Tabelle 3-20: Verteilung des massebezogenen Substrateinsatzes in Biogasanlagen für tierische Exkremente, (Betreiberbefragung DBFZ 2010), [1] .. 77

Tabelle 5-1: Übersicht über Verweilzeit, Substrateinsatz und installierte Leistung in unterschiedlichen Biogasregionen (Betreiberbefragung 2010) .. 92

Tabelle 5-2: Statistische Auswertung für die Transportentfernungen (in km) von eingesetzten Substraten ... 94

Tabelle 5-3: Substratkosten eigener Anbau nach Methangehalt (DBFZ Betreiberbefragung 2010), n=334 ... 102

Tabelle 5-4: Substratkosten externer Zukauf nach Methangehalt (DBFZ Betreiberbefragung 2010), n=334 ... 103

Tabelle 6-1: Stand der Biomassenutzung in Anlagen zur Strom- bzw. gekoppelten Strom- und Wärmeerzeugung im Jahr 2010 (Bearbeitungsstand April 2011) .. 113
Literaturverzeichnis

Zusammenfassung

[22] Demharter, W., Environmental Affairs Central Europe, UPM-Kymmene Corporation: Persönliche Mitteilung, 15.09.2010

[31] Fachagentur für Nachwachsende Rohstoffe (FNR): schriftliche Mitteilung zum Anbau nachwachsender Rohstoffe, 15.01.2010

[34] Hochberg, H. Repräsentative Agrarstrukturerhebung (ASE) 2009

[35] Höher, G.: persönliche Mitteilung zur Grünlandsituation, 27.10.10 und Vortrag „Biogasanutzung in Niedersachsen“ am 27.10.10, Jena

[37] ISTA Mielke GmbH: OIL WORLD Monthly, World Supply, Demand and Price Forecasts for Oilseeds, Oils and Meals

[38] Koop, D.: „Feldtest mit Pellet-BHKW“. Solarthemien, 10.02.2011

Zusammenfassung

[46] Niedersächsisches Ministerium für Ernährung, Landwirtschaft, Verbraucherschutz und Landesentwicklung: Länderanfrage Biogasanlagenbestand. schriftliche Mitteilung, 01.03.2011, Hannover

[48] PresseEcho: Nachhaltigkeitskriterien müssen Eingang finden im Börsenkontrakt für Raps, 02.03.2011

[50] Ridder, W., Vice President Business Development, Stendal Pulp Holding GmbH: Persönliche Mitteilung, 03.09.2010

[59] Vattenfall Europe New Energy GmbH (Hrsg.): Diverse Pressemeldungen und Artikel auf www.vattenfall.de (u.a. „Das neue Heizkraftwerk Klingenberg – Investition in eine klimafreundliche Zukunft“). Zugriff am 28.03.2011