





#### GA no 282826

#### Production of Solid Sustainable Energy Carriers from Biomass by Means of Torrefaction

#### Deliverable No. D1.2

#### Midterm Report after the Midterm Project Conference

| Dissemination Level |                                                                                       |   |  |  |  |  |
|---------------------|---------------------------------------------------------------------------------------|---|--|--|--|--|
| PU                  | Public                                                                                | х |  |  |  |  |
| PP                  | Restricted to other programme participants (including the Commission Services)        |   |  |  |  |  |
| RE                  | Restricted to a group specified by the consortium (including the Commission Services) |   |  |  |  |  |
| СО                  | Confidential, only for members of the consortium (including the Commission Services)  |   |  |  |  |  |

| Nature |        |   |  |  |  |  |
|--------|--------|---|--|--|--|--|
| R      | Report | х |  |  |  |  |
| 0      | Other  |   |  |  |  |  |

|                                                | Deliverable Details                                                                 |  |  |  |  |  |  |  |  |
|------------------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| Due date:                                      | 31.10.2013                                                                          |  |  |  |  |  |  |  |  |
| Submission date:                               | 28.11.2013                                                                          |  |  |  |  |  |  |  |  |
| Authors:                                       | Kathrin Bienert, Kay Schaubach, Janet Witt, Daniela Thrän, Virginie Bellmann (DBFZ) |  |  |  |  |  |  |  |  |
| Involved participants: All SECTOR participants |                                                                                     |  |  |  |  |  |  |  |  |
|                                                |                                                                                     |  |  |  |  |  |  |  |  |
|                                                |                                                                                     |  |  |  |  |  |  |  |  |
|                                                |                                                                                     |  |  |  |  |  |  |  |  |
| WP no. and title:                              | WP 1 Project Management                                                             |  |  |  |  |  |  |  |  |
| WP leader:                                     | DBFZ                                                                                |  |  |  |  |  |  |  |  |
| Task no. and title:                            | 1.2 Reporting and Contact to EC                                                     |  |  |  |  |  |  |  |  |
| Task leader:                                   | DBFZ                                                                                |  |  |  |  |  |  |  |  |
| Draft/Final:                                   | Final                                                                               |  |  |  |  |  |  |  |  |
| Keywords:                                      | Torrefaction, Midterm Project Meeting, Presentations, Project Management            |  |  |  |  |  |  |  |  |

#### **Table of Contents**

| 1 | Sun            | nmary                                                                             | . 3 |
|---|----------------|-----------------------------------------------------------------------------------|-----|
| 2 | Age            | nda                                                                               | . 3 |
| 3 | Pres           | sentations                                                                        | . 4 |
|   | 3.1            | Presentations of Work Packages 2-10                                               | 4   |
|   | 3.2            | Presentations of the external experts                                             | 4   |
|   | 3.3            | Results of group discussions on Future of torrefaction - market development and   |     |
|   | implica        | ations                                                                            | 4   |
|   | 3.3.1          | Statements of the Advisory Board                                                  | 5   |
|   | 3.3.2          | Summary of the discussion in Group 1 lead by Anders Nordin (UmU) and Nader Padban |     |
|   | (Vat           | enfall)                                                                           | 7   |
|   | 3.3.3<br>(TFZ) |                                                                                   |     |
| - | _              |                                                                                   |     |

4 Conclusions and Outlook ...... 10

#### Annex:

Annex I: Presentations of Work Packages 2-10

Annex II: Presentation of BioBoost

Annex III: Presentation of INFRES

Annex IV: Presentation of IEA / Task 40

#### 1 Summary

The SECTOR midterm project meeting took place from 16.10. to 18.10.2013 at the site of the project partner CENER in Pamplona, Spain. With 45 participants including two advisory board members and three external experts, the meeting was very successful and offered the opportunity to an intensive exchange between the different work packages and partners. A common workshop with external experts from related projects and the IEA Bioenergy Task 40 disclosed links and cooperation possibilities between the projects and SECTOR. An excursion to the CENER semi-industrial pilot scale test facility gave an insight into their biomass physical pre-treatment unit, gasification unit and the biochemical module.



Fig. 1 SECTOR Partners during the visit of the CENER facilities

#### 2 Agenda

The meeting was divided into an internal and an external part.

For the external part three experts were invited, in detail two representatives from the related projects BioBoost and INFRES and one representative of the IEA Bioenergy Task 40. This part consisted of the presentation of all work packages of SECTOR to inform all participants of the most important results achieved in each work package so far and a workshop together with the external experts. After the introduction of each related project, a common discussion was initiated to explore links and other cooperation possibilities between the projects.

The internal part of the meeting consisted of various group discussions with different work packages in each group and the general assembly with organisational matters of the project.

The advisory board members were invited to join the group discussions and to contribute to the different issues.

The group discussions were devided into three sessions. During the first and second session parallel meetings among different groups of work packages took place whereas the third session had its focus on a general discussion on the future of the torrefaction market.

In the first session, the work packages on Torrefaction and Densification (WP 3-5) have exchanged their findings with the work packages on End use and Logistics (WP 6/7). In a parallel group, the work package on Fuel specification, analysis and quality assurance (WP8) was in discussion about standardisation and dissemmination with the related work package (WP10).

In the second session, different representatives of the work packages responsible for the production of the torrefied pellets and the end use (WP 3-7) discussed with either WP 8 about analysis methods and fuel properties or with WP 9 about storylines and scenarios of the life cycle assessment. These two sessions aimed at defining the status quo, analysing the lessons learnt and to find the appropriate way forward.

The third session consisted of two different group meetings, which were assigned by lot at the beginning of the project meeting. Only the leaders of the discussions were defined in advance. The objective of these groups was to talk about the future of torrefaction – market development and implications.

#### **3 Presentations**

#### 3.1 Presentations of Work Packages 2-10

The work package presentations include all results and highlights which were achieved in the work packages since the beginning of the project. Please refer to Annex I for the presentations. The objective of these presentations was to provide an overview of the objectives and results in each work package for all participants. Further details were discussed in the different working group sessions during the internal part of the meeting.

#### **3.2** Presentations of the external experts

In the beginning of the workshop, every external expert was invited to give an introduction of their project. These presentations can be found from Annex II - IV. After the introduction, an open discussion led to different approaches for a cooperation with SECTOR.

# 3.3 Results of group discussions on Future of torrefaction - market development and implications

During this session the work was focused on: (1) identifying the largest market potentials for torrefied biomass; (2) documenting the impressions of a potential change in the market

situation for torrefied biomass in the last 2 -3 years; (3) identifying any potential need for changes in the focus/objectives of the project; and if so, specifying the changes and impacts on the project; and (4) compiling any concrete and realistic ideas on how to implement changes in the project.

All participants were divided into two working groups. Before the discussions started, the Advisory Board provided a statement with their point of view to the asked questions. Following is a short compiled summary of the conclusions from the two groups.

#### 3.3.1 Statements of the Advisory Board

Answers to the first question "Where do you see the largest market potentials for torrefied biomass?":

- Coal fired condensing plants •
- High volumes required from recycled or renewable sources •
- Low cost required, because coal is the cheapest of fuels ٠
- High calorific value required to achieve nominal capacity of the power plant
- Modest additional investments at the plant required- if investing in new fuel storage, preparation and feeding equipment can be avoided, it is a clear bonus
- Problems with air emissions, ash handling and boiler maintenance/reliability must not occur
- Advanced gasification technologies and CHP

The key question is if coal is currently too abundant, too cheap and a too good fuel so that torrefied biomass is in the end a long-term sustainable solution to replace it?

#### Lowest hanging fruits niche markets – NOW

Current situation:

Current approach:

- No standards - Closed and integrated business models based on long term delivery agreements - No volumes
  - Brown field retrofitting of existing pellet/briquetting plants
  - Use of woody biomass feedstock
  - North American or European producer and buyers

No experience

#### Largest torrefaction market – EVENTUALLY

| Future | situation: |
|--------|------------|
|        |            |

- Standards are defined
- Free volumes traded internationally
- Experience of application



Future approach:

- Long haul biomass supply chains
- And/or broad range of biomass feedstock including non-traditional biomass (agricultural biomass, stranded biomass, funny fuels, etc.)
- Selling into an international market to coal fired power -, cement -, or gasification plants , industrial users
- Green field investments
- South America, Australia, New Zealand, Sub-Saharan Africa

# Answers to the second question "Do you see a change in the market situation for torrefied biomass in the last 2 - 3 years?":

- Insecurity of incentive schemes
  - Investment schemes are the clear driver for investments in renewable energy
  - Peak of incentives was reached during the financial crisis
  - Many incentive schemes in Europe are currently under discussion
  - Electricity price is decreasing due to other renewable energy investments (at least in Germany)
  - Carbon credit market is weak
  - Security for new investments is low
- Key question: Revival of incentive schemes, carbon credit or electricity price to be expected?

Answers to the third question: "Is there a need for changes in the focus / objectives of the project and if YES, please specify the changes and impacts on the project.":

- No need for project focus / objective change
- Key question: Relevance of results?
  - Are markets ready for torrefied biomass NOW?
  - Ensure relevance of results for long term future investments?
  - What are concrete trigger points for implementation?

# Answers to the fourth question: "Do you have concrete and realistic ideas on how to implement changes in the project?":

- Pre-contracts of substantial volumes by industry partners?
- Improving efficiency and economic feasibility of the whole value chain?

# 3.3.2 Summary of the discussion in Group 1 lead by Anders Nordin (UmU) and Nader Padban (Vattenfall)

Compared to what was foreseen and expected a few years ago, torrefaction and its market development presently suffer from two main challenges; (1) the slower progress of commercialization and roll out of industrial torrefaction capacity with sufficient product quality; and (2) the presently low market prize of  $CO_2$  in European emission trading system, combined with a relatively low coal prize.

There are however huge dedicated market segments that would be sufficient for the torrefaction industry to significantly grow and commercially take off (in a decent and healthy progressive way). The identified growth segments were identified as follows:

- Expansion in policy / incentive driven markets:

The national incentives differ much within the EU and a significant part of the coal replacement may well be driven by these national incentives.

- Taking market share from traditional wood pellets:

Industrial replacement of fossil coal, gas and oil is another huge segment where traditional pellets presently are expanding, and where torrefied and compacted material have significant advantages. Even for medium scale oil and gas fired plants there will be a growing market for torrefied and densified biomass materials.

- A fuel for peak load application (oil, gas and low calorific value biomass replacement):

Due to its high energy density torrefaction product has a better opportunity for replacement of fossil fuels during peak load. For normal biomass plants the torrefied fuel might be used as a booster when needed.

- Long term application in liquid fuel or chemicals from biomass:

Torrefaction as a pre-treatment process for centralized gasification and synthesis of liquid fuels and green chemicals may also well be a huge potential market, in the long term.

- Upgrading/ homogenization of low quality biomass sources

Torrefaction might be a route for homogenization of the quality of agricultural residue, increasing their energy density, improving their undesired chemical properties and by that turning those to tradable energy sources.

For a successful industrialization of the technology the SECTOR project and torrefaction industry need to put effort on following actions:

- Communicate the need for a working carbon emission system and market wellfunctioning CO<sub>2</sub> trading system and how torrefaction could be the major facilitator in the conversion of European energy industry (who else would)
- Document and push the advantages of torrefied materials
- List "all" possible niche markets prioritize in this list
- Try to make transparent business case calculations
- Build the confidence and reliance in the industrial torrefaction sector
- Explore all potential alternative uses
- Compile present and future national subsidiary systems
- Push converting/replacing/expanding/improving white pellet industry, and
- Stimulate large scale applications of biomass in general

In the long, however it must be realized that coal replacement is and will be the most efficient GHG-remediation use of biomass. It is cost-efficient and also preparing for liquid fuel production. We therefore need to improve the emission trading system to get back to the market prices we had a few years ago.

# 3.3.3 Summary of the discussion in Group 1 lead by Manuel Schwabl (BE2020) and Hans Hartmann (TFZ)

The torrefaction process is a possibility to upgrade biogenic fuels, resulting in significant advantages in comparison to non-torrefied biofuels:

- An increase in energy density enhances logistic costs (storage and transportation)
- The physical properties are changed by torrefaction: in particular the grinding behaviour and the water uptake are changed.

The feedstock of torrefied fuel is in competition with "white" pellets and coal. The substitution of "white" pellets can only be achieved by taking advantage of the lower transportation costs. For the competition with coal both advantages need to be capitalized. Besides this, attractive incentive schemes will also be necessary to compete with this low-cost feedstock.

One market for such a feedstock is co-firing in coal CHP plants or to completely convert the whole plant to this biogenic fuel. The sales quantity of torrefied fuels can be very high and can deal with different qualities of the biogenic material (within reason). One key issue for this market is thus the fuel costs. Since torrefied fuels would most likely substitute coal, this market would be able to take full advantage out of the changed fuel properties. Thus CHP plants running on torrefied fuels would have the opportunity to fill the energy gap, in particular when it comes to shut down of coal and/or nuclear power plants ("plant re-life"). In the past few years, investors for this market have become more careful, since the expectations concerning the physical properties were not fulfilled.

A second market is the generation of chemicals by entrained flow gasification process. This market would also have a high demand in such fuels, but is more stringent concerning the fuel quality. However, since the torrefied fuel would act as a substitute for coal, this market can take full advantage of the properties of torrefied feedstock.

A third market was identified for small and medium scale combustion systems. This market is characterised by rather small volumes, but would be an interesting starter for the torrefaction industry and to build up capacities. The feedstock, however, needs to be of a certainly high quality. The major opportunity is faced when the "white" pellets market turns into an import market. Then the advantage of increased energy density and lower transportation costs can be fully utilised. However, this market also has some major concerns and challenges, which deal with the public acceptance, legal restraints and ability of the combustion systems on the market to utilise this fuel.

Despite these draw-backs, a step and introduction of torrefied fuels in the heating sector could act rather early as a driving force for the torrefied feedstock market. This would

- ensure the medium to long-term survival of torrefaction industry,
- give time to develop large scale application,
- give time to explore alternative (and cheap) feedstocks and
- give time to demonstrate that a promised quality can be produced at large scale.

For this reason an increase in dissemination measures for small- and medium scale combustion appliances is targeted. A dedicated discussion platform for technology manufacturers and fuel distributers is deemed to support this upcoming market.

#### 4 Conclusions and Outlook

The midterm meeting has shown a good progress in all work packages and an intensive exchange between them has been set. As well as from the successful discussions between the work packages, the partners could benefit from the contribution and interesting input from the advisory board members and the external experts.

The results achieved during the discussions in Session III on the Future of Torrefaction will be used as a starting point for a "strategy paper" of the SECTOR partners giving their view on the further strategic development of the torrefaction market. Key issues will be the identification of a range of potential markets, including niche markets, according to changing market conditions, addressing national and European support schemes (foremost the emission trading system), pushing large scale use of biomass and the setup of show cases to build up confidence in the market. These points, complemented by supporting others, will be compiled into a roadmap. SECTOR will initiate the elaboration of this strategy paper, which will be performed by the project partners and key market players such as associations like the IBTC. The SECTOR plan of use and dissemination will support and reflect the concerted market wide action aiming at the acceleration of market implementation of torrefied (and subsequently other thermally treated) biomass.

To guarantee a continuous exchange during the second phase of the project, it is envisaged to plan regular meetings between the Coordinator and the Work Package leaders (every 6 months) with the possibility to hold work package meetings in connection to these meetings. The final project meeting is planned for spring 2015 at the coordinator's site in Leipzig.



Production of Solid Sustainable Energy Carriers from Biomass by Means of **TOR**refaction

# SECTOR - Production of Solid Sustainable Energy Carriers from Biomass by Means of Torrefaction

A European R&D Project funded within the Seventh Framework Programme by the European Commission

Midterm Meeting in Pamplona, Spain

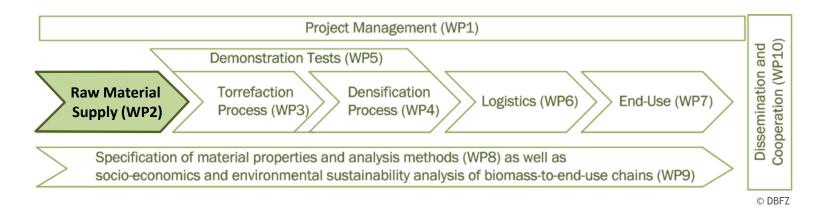
**Presentation of Work Packages 2-10** 












© 1,5,6: ECN; 2-4 Jasper Lensselink



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826





# Production of Solid Sustainable Energy Carriers by Means of Torrefaction

# MARKET ASSESSMENT OF BIOMASS FEEDSTOCK (WP2)



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

### WP2: Market assessment of biomass feedstock - Results

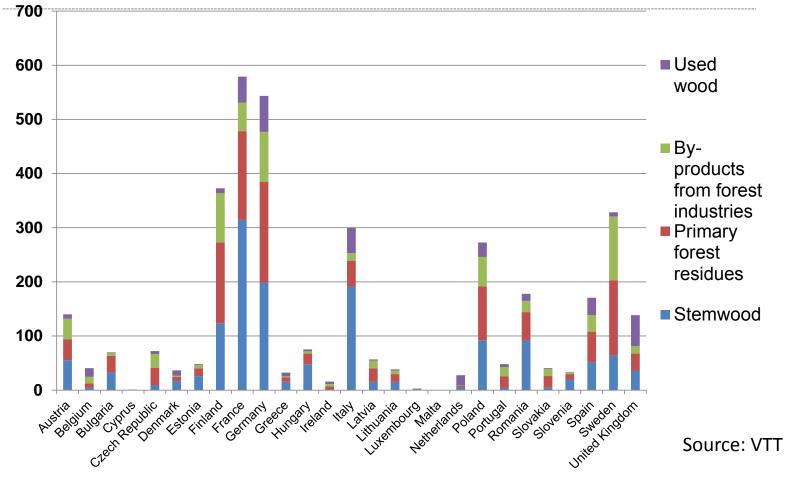
- D2.2 Biomass potentials
  - Based on existing studies technical available potential
- D2.3 Profiles of selected raw material
  - Classification of raw material according to EN 14961-1 standard
  - Done in 2 phases D2.1 (preliminary) and D2.3 (final)
  - Property information from literature and laboratory tests
- D2.4 Quality demands from producers and end users
  - End-users work carried out by questionnaire (report available)
  - Producers (SECTOR partners and International Biomass Torrefaction Council members) - some answers received



Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction

#### D2.2 Summary of woody biomass resources in Europe

| Source                             | 1,000 solid m <sup>3</sup> | PJ/a  |
|------------------------------------|----------------------------|-------|
| Stem wood                          | 195 656                    | 1 438 |
| Landscape management wood residues | 59                         | 514   |
| Forest residues                    | 166 438                    | 1 186 |
| By-products and residues from wood | 92 164                     | 644   |
| processing industry                |                            |       |
| Used wood                          | 52 000                     | 397   |
| Total EU-27                        | 506 258                    | 3 664 |
|                                    |                            |       |
| Ukraine                            | 9 300                      | 67    |
| North-West Russia                  | 103 900                    | 748   |
| Belarus, Norway, Switzerland       | 6 560                      | 157   |


#### Sources: BEE-project and EU-Wood project



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

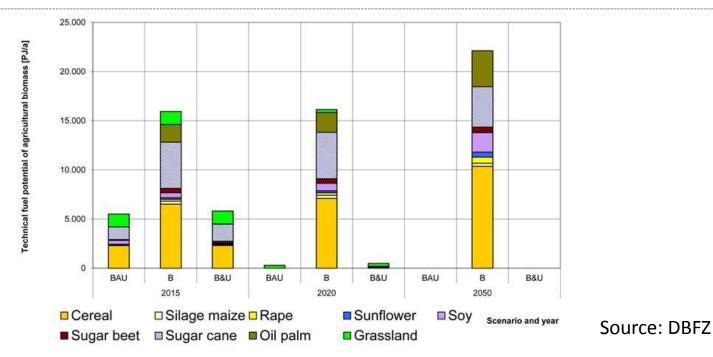


#### D2.2 Wood energy potentials in EU-27 (PJ/a)



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826




### D2.2 Agricultural biomass potentials

- Primary agricultural residues (residues remaining in the fields after harvest) are estimated to be 806 PJ.
- Largest part of the potential comes from cereal straw (560 to 600 PJ), rape straw (91 PJ) and corn straw (86 PJ).
- Annual straw potential is estimated to be in some studies from 960 to 983 PJ.
- Largest total potentials are in France, Germany and Spain.



Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

#### D2.2 Technical fuel potential for agricultural biomass



- BAU Business as usual (extrapolation of the short and medium-term trendsB Energy use of biomass is strongly forced, e.g. increase of crop yields, most fertile crops are cultivated
- **B&U** Bioenergy increased restrictions on environmental protection and nature conservation

The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction

#### D2.3 Summary of agricultural biomass potentials in EU-27

| Resource                                               | PJ/a          | Source                               |
|--------------------------------------------------------|---------------|--------------------------------------|
| Cereal straw                                           | 560           | BEE, Böttcher et al. 2010            |
|                                                        | 600           | DBFZ, Thrän et al. 2010              |
|                                                        | 960           | BIOMASS FUTURES, Elbersen et al 2012 |
|                                                        | 983           | MTT, Pahkala & Lötjönen 2012         |
| Sugar beet                                             | 25            | BEE, Böttcher et al. 2010            |
|                                                        | 36            | MTT, Pahkala & Lötjönen 2012 (EU-25) |
| Sunflower                                              | 34            | BEE, Böttcher et al. 2010            |
| Rice husk                                              | 9             | BEE, Böttcher et al. 2010            |
| Corn residues                                          | 85            | BEE, Böttcher et al. 2010            |
| Pruning residues, total                                | 423           | BIOMASS FUTURES, Elbersen et al 2012 |
| Vineyard residues                                      | 14            | BEE, Böttcher et al. 2010            |
| Olive three prunings                                   | 28            | BEE, Böttcher et al. 2010            |
| Energy crops, vegetable diet                           | 3 465         | BEE, Böttcher et al. 2010            |
| Energy crops, mixed diet                               | 742           | BEE, Böttcher et al. 2010            |
| Perennial herbaceous biomass                           | 1 642         | BIOMASS FUTURES, Elbersen et al 2012 |
| Agricultural residues (sugar beet, legume, potato, oil | 656           | MTT, Pahkala & Lötjönen 2012         |
| plants)                                                |               |                                      |
| Miscanthus                                             | 3 324 – 7 651 | RENEW, Seyfried et al. 2004          |
| Reed canary grass (theoretical)                        | 8 110         | BEE, Böttcher et al. 2010            |
| Woody crops (poplar, theoretical)                      | 12 713        | BEE, Böttcher et al. 2010            |
| Short rotation coppice                                 | 2 576 – 5 447 | RENEW, Seyfried et al. 2004          |
| agreement n° 282826                                    |               |                                      |

agreement n° 282826

www.sector-project.eu

Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction

#### D2.3 Selected raw materials for lab and pilot tests

| - No. | Selected feedstock (pilot test marked by bold, 12 raw materials)           | Test type to perform |
|-------|----------------------------------------------------------------------------|----------------------|
| 1     | Delimbed coniferous stem wood without bark : Pine and spruce (Reference 1) | Lab and pilot        |
| 2     | Logging residue, coniferous                                                | Lab and pilot        |
| 3     | Straw, wheat (Nordic conditions)                                           | Lab                  |
| 4     | Used wood – post consumer wood, recycled wood, chemically untreated        | Lab and pilot        |
| 5     | Bark                                                                       | Lab                  |
| 6     | Delimbed broadleaves stem wood with bark: Beech (Reference 2)              | Lab and pilot        |
| 7     | Poplar                                                                     | Lab and pilot        |
| 8     | Straw (Oat and wheat, Southern conditions)                                 | Lab and pilot        |
| 9     | Prunings from olive trees -woody biomass                                   | Lab and pilot        |
| 10    | Eucalyptus                                                                 | Lab and pilot        |
| 11    | Paulownia                                                                  | Lab and pilot        |
| 12    | Bamboo                                                                     | Lab and pilot        |
| 13    | Palm oil residues (e.g. Oil palm fruit bunch, palm kernel or shell)        | Lab                  |
| 14    | Bagasse                                                                    | Lab and pilot        |
| 15    | Corn cobs                                                                  | Lab                  |
| 16    | Miscanthus                                                                 | Lab                  |
| 17    | Sun flower residues                                                        | Lab                  |
| 18    | Willow (Salix)                                                             | Lab and pilot        |
| 19    | Reed canary grass                                                          | Lab                  |
| - 20  | Straw, barley (Nordic conditions)                                          | Lab                  |
| 21    | Rape straw                                                                 | Lab                  |

#### D2.3 Example of profile - Reference raw material

1.

|                                                                                    | PROFILE No. 1                                                                         |              |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------|
| SECTOR                                                                             | CONIFEROUS STEM WOOD                                                                  |              |
| Description of feedstock                                                           | Stem wood, coniferous without bark<br>(Reference raw material 1)                      | No New Train |
| Raw material according to<br>EN 14961-1 Table 1                                    | Forest, plantation and other virgin wood 1.1.3.2                                      | S. F. A.F.   |
| Traded form (e.g. wood<br>chips) according Table 2<br>of EN 14961-1 or other       | Wood chips, saw dust                                                                  |              |
| Selection criteria for<br>feedstock profile (e.g.<br>high potential, availability) | High potential, total forest wood in EU-27<br>(Mantau et al 2009, SECTOR report D2.2  |              |
| Remarks (e.g. biomass<br>cutting step, place of<br>origin, pretreatment etc.)      | Cutting and delimbering trees, forwarding transporation to plant, debarking trees and |              |
| Selected for laboratory<br>and/or pilot tests                                      | Laboratory test, yes<br>Pilot test, yes                                               |              |
|                                                                                    |                                                                                       |              |

#### QUALITY OF RAW MATERIAL 1.

#### 1.1 Emissions/corrosion related compounds (w-% of dry matter, EN 15104 (N, S) and EN 15289 (CI))

| Component     | Nitrogen, N | Sulphur, S | Chlorine, Cl |
|---------------|-------------|------------|--------------|
| Typical value | 0,1         | <0,02      | 0,01         |
| Variation     | < 0,1       | <0,01      | < 0,01       |
| (min-max)     | 0,5         | 0,03       | 0,05         |
|               |             |            |              |

Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction

#### 1.2 Ash content, ash melting behavior and ash composition

|                    |                         |       |            |     |      |        |      |       |      |                 |      |      |                | 02024 42 20 7                       |  |  |  |  |
|--------------------|-------------------------|-------|------------|-----|------|--------|------|-------|------|-----------------|------|------|----------------|-------------------------------------|--|--|--|--|
|                    | Ash content Ash content |       |            |     |      |        |      |       |      | 02834-12. 28 p. |      |      |                |                                     |  |  |  |  |
| Paramete           | r EN 1477               |       | SST        |     | DT   | F      | IT   | FT    |      |                 |      |      |                | 1.2 Reactivity of feedstock         |  |  |  |  |
| Unit               | % (DB)                  |       | °C         |     | °C   | 0      | C    | °C    |      |                 |      |      |                |                                     |  |  |  |  |
| Typical va         | lue 0,4                 | e 0,4 |            | ),4 |      |        |      | -     |      |                 |      |      |                |                                     |  |  |  |  |
| variation          | 0,3-0,6                 | i     | 1150       |     | 1180 | 1      | 200  | 12    | 25   |                 |      |      |                |                                     |  |  |  |  |
| Macro              | Composition             | AI    | Са         | Fe  | Mg   | Ρ      | К    | As    | Si   | Na              | Ti   |      |                | Weight loss at 2<br>minutes at T> 2 |  |  |  |  |
| elements           | Unit                    | mg/k  | mg/kg (DB) |     |      |        |      |       |      |                 |      |      | minutes at 1>2 |                                     |  |  |  |  |
| CEN/TS             | Bongo                   | 30    | 500        | 10  | 100  | 50     | 200  | <0,01 | 100  | 10              |      |      |                |                                     |  |  |  |  |
| 15290              | Range                   | 500   | 1000       | 100 | 200  | 100    | 1400 | 1     | 200  | 200             | <20  |      |                |                                     |  |  |  |  |
| elements<br>CEN/TS | Composition             | Cd    | Co         | Cr  | Cu   | Hg     | Mn   | Мо    | Ni   | Pb              | Sb   | V    | Zn             |                                     |  |  |  |  |
|                    | Unit                    | mg/k  | g (DB)     |     |      |        |      |       |      |                 |      |      |                | Torrefaction degree by TGA ~28%     |  |  |  |  |
|                    |                         | <0,0  | 5 <0,2     | 0,2 | 0,5  | <0,004 | 40   |       | <0,1 | <0,5            | 0,01 | <0,2 | 5              | (Thermogravimetric analysis)        |  |  |  |  |
| 15297              | Range                   |       |            |     |      |        |      |       |      |                 |      |      |                |                                     |  |  |  |  |

| 1.1 Quality data of biomass for torrefaction                                                         |                    |                                              |
|------------------------------------------------------------------------------------------------------|--------------------|----------------------------------------------|
| Property                                                                                             | Typical value      | Variation (min. – max.)                      |
| Traded form (e.g. chips) EN 14961-1, Table 2                                                         | Wood chips, saw of | lust                                         |
| Particle size, P (Dimension /nominal size, mm,<br>use) EN 15149-1, screen size according ISO<br>3310 |                    | P45 or P65(wood chips)<br>1 – 5 mm (sawdust) |
| Bulk density (BD), kg/m <sup>3</sup> EN 15103                                                        | 330                | 310 – 350                                    |
| Moisture as received, M (w-%), EN 14774-1 or 3                                                       | < 50               | 30 – 55                                      |
| Amount of fines, F, w-% (≤ 3,15 mm) EN 15149-1                                                       | 12                 | 1 -19,6                                      |
| Hemicelluloses content, w-% dry *)                                                                   |                    | 25 – 28                                      |
| Cellulose content, w-% dry *)                                                                        | 40                 | 40- 45                                       |
| Lignin content, w-% dry *)                                                                           | 30                 | 24 -33                                       |
| C (w-% dry), EN 15104                                                                                | 51                 | 48 – 50                                      |
| H (w-% dry) EN 15104                                                                                 | 6,0                | 6 - 6,5                                      |
| O (w-% dry) calculated                                                                               | 40                 | 38 – 42                                      |
| Volatile content, VM (w-% dry) EN 15148                                                              | 86                 | 80 – 90                                      |
| Net calorific value, dry MJ/kg EN 14918                                                              | 19,3               | 18,5 – 19,8                                  |
| Add other properties, S, w-% dry                                                                     | 0,05               |                                              |

QUALITY INFORMATION FOR TORREFACTION

Chlorine, Cl, w-% dry Source<sup>1</sup>: SECTOR Partners

Source<sup>2</sup>: Alakangas, E. Analysis of particle size of wood chips and hog fuel - ISO/TC 238, VTT-R-

< 0,01

| Indicator                                                  | Weight loss at 280-290 °C with residence time of 30 minutes at T> 200°C (% AWL) |
|------------------------------------------------------------|---------------------------------------------------------------------------------|
| Torrefaction degree by TGA<br>(Thermogravimetric analysis) | ~28%                                                                            |
| Source: SECTOR Feedback                                    | ·                                                                               |



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

Production of Solid Sustainable Energy Carrie

rom Biomass by Means of TORrefaction

# D2.4 Quality demands from (producers and) end users


- The most important properties are (end-users):
  - net calorific value as received (Q) (19 23 MJ/kg)
  - ash content (A) (2 3%, one response < 10%)</li>
  - particle size distribution (P) and
    - Typical requirements for particle size distribution of hard coal are less than 20% larger than 90  $\mu m$  and 100% smaller than 200  $\mu m.$

Particle size distribution for industrial wood pellets (FDIS ISO 17225-2, final draft standard)

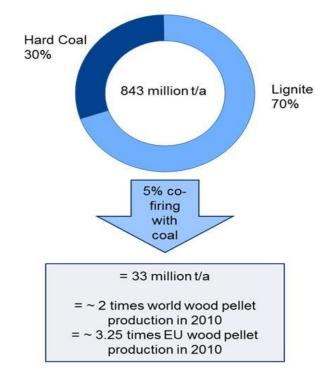
| Property (standard)           | Unit    | 11                | 12                | 13                |
|-------------------------------|---------|-------------------|-------------------|-------------------|
| Particle size distribution of | w-% dry | ≥ 99% (< 3,15 mm) | ≥ 98% (< 3,15 mm) | ≥ 97% (< 3,15 mm) |
| disintegrated pellets,        |         | ≥ 95% (< 2,0 mm)  | ≥ 90% (< 2,0 mm)  | ≥ 85% (< 2,0 mm)  |
| (ISO 17830)                   |         | ≥ 60% (< 1,0 mm)  | ≥ 50% (< 1,0 mm)  | ≥ 40% (< 1,0 mm)  |

- moisture (M) (< 10 w-%)
- Other properties
  - minerals like chlorine, calcium, potassium and sodium (so called alkalis).





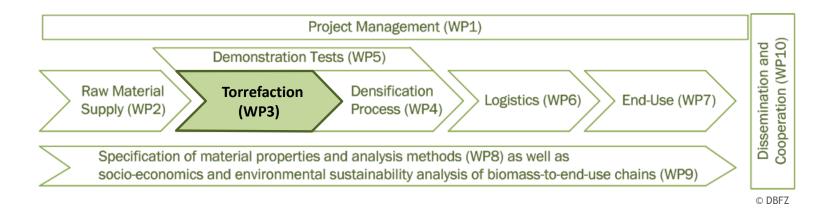
# D2.4 Other questions to end-users


- Current use of wood pellets/torrefied pellets and cofiring ratios
- Possibilities to use coal mills
- Investments needed for use of torrefied pellets
- Experience of cofiring wood pellets and benefits to use torrefied pellets
- Estimation of demand based on current coal use
  - Total coal use was 772 million tons in Europe in 2012.
  - Biggest coal users in Europe are Germany, Poland, Ukraine, United Kingdom and Czech Republic.



Production of Solid Sustainable Energy Carrier from Biomass by Means of TOR refaction

## D2.4 Estimation of demand of pellets/torrefied pellets


Wood pellet cofiring potential in more than 100 existing pulverised coal-fired plants in Europe (Source: Pöyry)



By torrefied pellets replacement could be as high as 50%\*, this makes European market hugely significant.

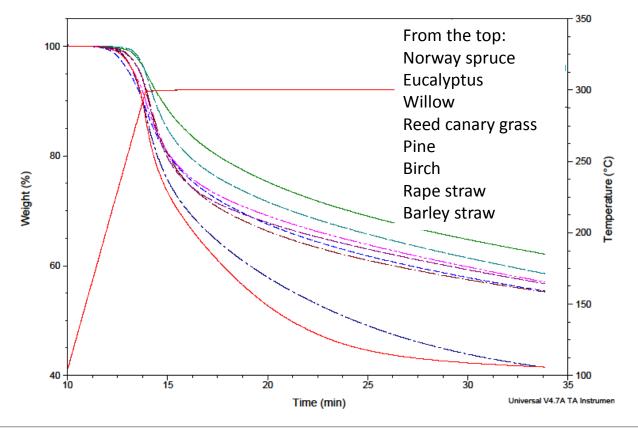
\*Source: *Wilén, C., Jukola, P., Järvinen, T., Sipilä, K. Verhoeff, F. & Kiel, J. 2013.* Wood torrefaction – pilot tests and utilisation prospects, VTT Technology 122. 73 p.





# Production of Solid Sustainable Energy Carriers by Means of Torrefaction

# TORREFACTION (WP3)

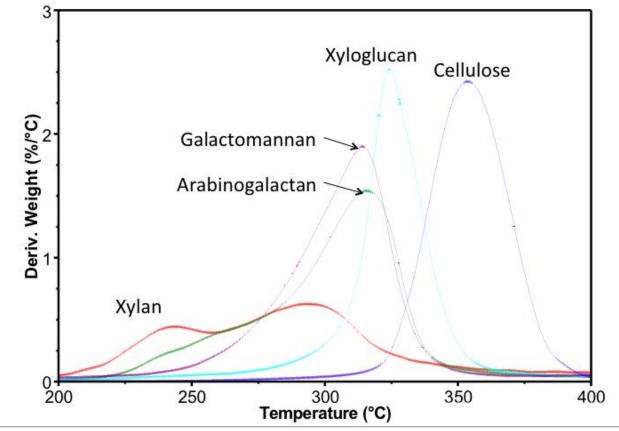



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826



#### WP3.1: Lab tests (Umea)

Mass loss rate profiles (TGA experiments)

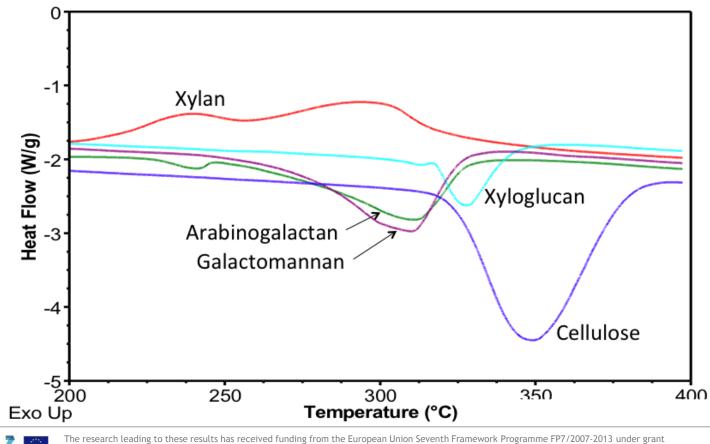







## WP3.1: Lab tests (Umea)

Mass loss rate profiles (hemicelluloses)



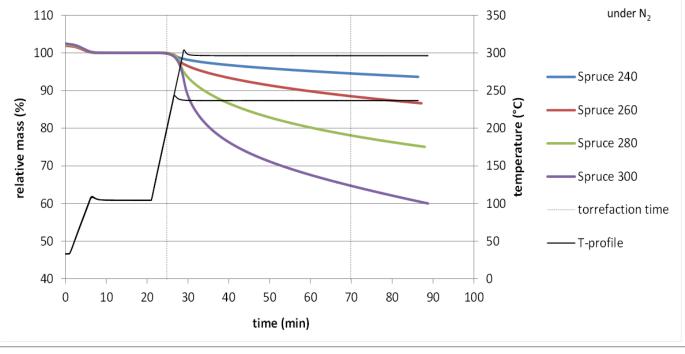





## WP3.1: Lab tests (Umea)

Enthalpy profiles (hemicelluloses)




agreement n° 282826



## WP3.1: Lab tests (ECN)

#### Mass los profiles spruce torrefaction:

- Temperature profiles shown for 240 and 300°C measurements
- Torrefaction time is 45 min starting at 200°C

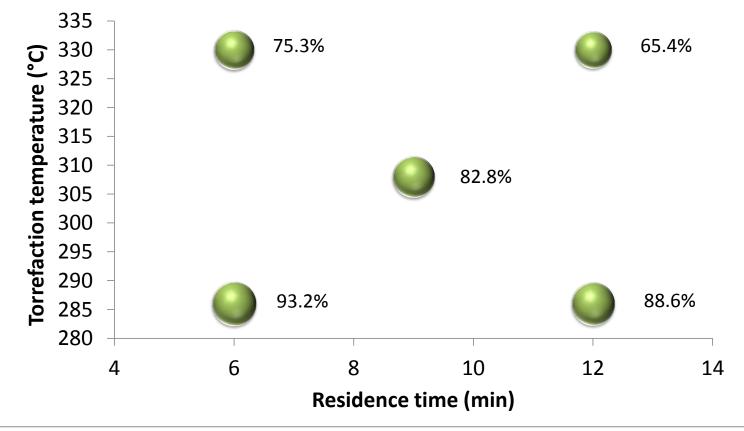




The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

## WP3.2: Pilot tests (ECN)

- Material Supply & Demand sheet was introduced to track individual (torrefied) material shipments
- Approximately 45 ton material has been distributed from producers to partners up to now (incl. WP5)


| ✓ No. ↓1 SECTOR sample ID number                        | 🔻 provider 🔻 | recipient 💌 | quantity in kg | ▼ production date ▼ | date expected I 🔻 |        | biomass 💌      |                   | Torr-Temp 💌 | material necessary for         | <ul> <li>included in SECTOR</li> </ul> |
|---------------------------------------------------------|--------------|-------------|----------------|---------------------|-------------------|--------|----------------|-------------------|-------------|--------------------------------|----------------------------------------|
| 68 1063 ECN_spruce-240_torrefied pellets_210113         | ECN          | EON         | 6              | 210113              |                   | ??1013 | spruce         | torrefied pellets | 240         | durability/leaching            | yes                                    |
| 69 1064 ECN_spruce-280_torrefied pellets_230113         | ECN          | EON         | 6              | 230113              |                   | ??1013 | spruce         | torrefied pellets | 280         | durability/leaching            | yes                                    |
| 70 1065 ECN_spruce-260_torrefied pellets_180113         | ECN          | VTT         | 50             | 180113              |                   | ??1013 | spruce         | torrefied pellets | 260         | logistic tests                 | yes                                    |
| 71 1066 ECN_poplar-270_torrefied pellets_060513         | ECN          | VTT         | 30             | 060513              |                   | ??1013 | poplar         | torrefied pellets | 270         | logistic tests                 | yes                                    |
| 72 1067 ECN_pine-270_torrefied pellets_060513           | ECN          | VTT         | 30             | 060513              |                   | ??1013 | pine           | torrefied pellets | 270         | logistic tests                 | yes                                    |
| 73 1068 ECN_bambootorrefied chips_NA                    | ECN          | OFI         | 2              | NA                  |                   | ??1013 | bamboo         | torrefied chips   |             | characterisation               | yes                                    |
| 74 1069 ECN_bamboo-245_torrefied chips_240212           | ECN          | OFI         | 2              | 240212              |                   | ??1013 | bamboo         | torrefied chips   | 245         | characterisation               | yes                                    |
| 75 1070 ECN_bamboo-255_torrefied chips_230212           | ECN          | OFI         | 2              | 230212              |                   | ??1013 | bamboo         | torrefied chips   | 255         | characterisation               | yes                                    |
| 76 1071 ECN_bamboo-265_torrefied chips_220212           | ECN          | OFI         | 2              | 220212              |                   | ??1013 | bamboo         | torrefied chips   | 265         | characterisation               | yes                                    |
| 77                                                      |              |             |                |                     |                   |        |                |                   |             |                                |                                        |
| 78                                                      |              |             |                |                     |                   |        |                |                   |             |                                |                                        |
| 79 2001 UmU_pine-285_torrefied pellets_150913           | UmU          | DBFZ        | 60             | 150913              | 301013            |        | pine           | torrefied pellets | 285         | grinding                       | yes                                    |
| 80 2002 UmU_forest residue-285_torrefied pellets_190613 | UmU          | DBFZ        | 60             | 190613              | 300913            |        | forest residue | torrefied pellets | 285         | grinding                       | yes                                    |
| 81 2003 UmU_willow-308_torrefied pellets_190613         | UmU          | DBFZ        | 60             | 190613              | 300613            | 130713 | willow         | torrefied pellets | 308         | grinding                       | yes                                    |
| 82 2004 UmU_pine-285_white chips_NA                     | UmU          | ECN         | 5              | NA                  | 301013            |        | pine           | white chips       | 285         | TGA                            | yes                                    |
| 83 2005 UmU_forest residue-285_white chips_NA           | UmU          | ECN         | 5              | NA                  | 300913            |        | forest residue | white chips       | 285         | TGA                            | yes                                    |
| 84 2006 UmU_willow-308_white chips_NA                   | UmU          | ECN         | 5              | NA                  | 300613            | 130713 | willow         | white chips       | 308         | TGA                            | yes                                    |
| 85 2007 UmU_pine-285_torrefied chips_280813             | UmU          | DTI         | 4              | 280813              | 301013            |        | pine           | torrefied chips   | 285         | characterisation pelletization | yes                                    |
| 86 2008 UmU_forest residue-285_torrefied chips_170513   | UmU          | DTI         | 4              | 170513              | 300913            |        | forest residue | torrefied chips   | 285         | characterisation pelletization | yes                                    |
| 87 2009 UmU_willow-308_torrefied chips_170513           | UmU          | DTI         | 4              | 170513              | 300613            | 130713 | willow         | torrefied chips   | 308         | characterisation pelletization | yes                                    |
| 88 2010 UmU_pine-285_torrefied pellets_150913           | UmU          | DTI         | 2              | 150913              | 301013            |        | pine           | torrefied pellets | 285         | O2 depl./self-heating          | yes                                    |
| 89 2011 UmU_forest residue-285_torrefied pellets_190613 | UmU          | DTI         | 2              | 190613              | 300913            |        | forest residue | torrefied pellets | 285         | O2 depl./self-heating          | yes                                    |
| 90 2012 UmU_willow-308_torrefied pellets_190613         | UmU          | DTI         | 2              | 190613              | 300613            | 130713 | willow         | torrefied pellets | 308         | O2 depl./self-heating          | yes                                    |
| 91 2013 UmU_pine-285_torrefied pellets_150913           | UmU          | EON         | 6              | 150913              | 301013            |        | pine           | torrefied pellets | 285         | durability/leaching            | yes                                    |
| 92 2014 UmU_forest residue-285_torrefied pellets_190613 | UmU          | EON         | 6              | 190613              | 300913            |        | forest residue | torrefied pellets | 285         | durability/leaching            | yes                                    |
| 93 2015 UmU_willow-308_torrefied pellets_190613         | UmU          | EON         | 6              | 190613              | 300613            | 130713 | willow         | torrefied pellets | 308         | durability/leaching            | yes                                    |
| 94 2016 UmU_pine-285_white chips_NA                     | UmU          | USTUTT      | 7              | NA                  | 301013            |        | pine           | white chips       | 285         | analysis                       | yes                                    |
| 95 2017 UmU_forest residue-285_white chips_NA           | UmU          | USTUTT      | 7              | NA                  | 300913            |        | forest residue | white chips       | 285         | analysis                       | yes                                    |





### WP3.2: Pilot tests (Umea)

Mass yield comparison torrefied willow



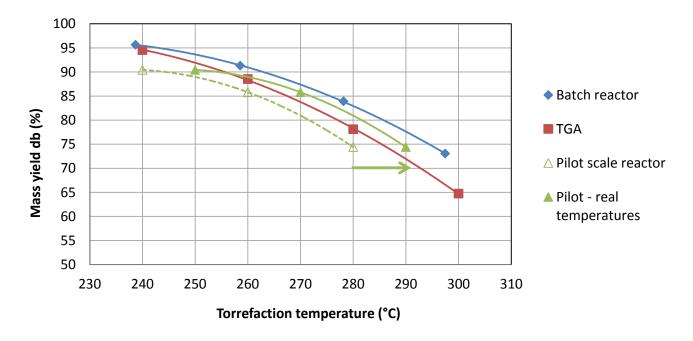
The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826



# WP3.2: Pilot tests (Umea)

Torrefied salix from pilot torrefaction reactor



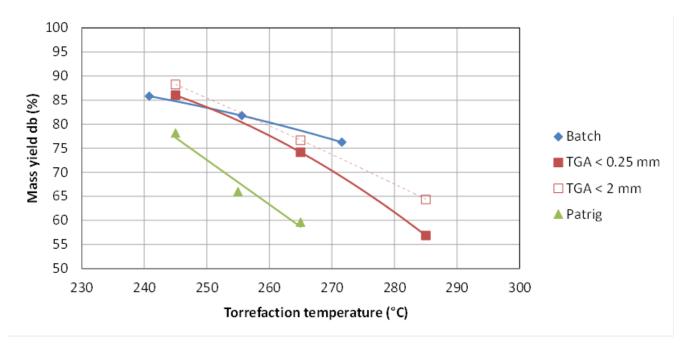



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826



# WP3.2: Pilot tests (ECN)

- Mass yield comparison spruce torrefaction:
  - Pilot torrefaction temperatures expected to have been ±10 °C higher, due exothermicity of spruce








# WP3.2: Pilot tests (ECN)

- Mass yield comparison bamboo torrefaction:
  - Pilot torrefaction temperatures expected to have been ±23 °C higher, due exothermicity of bamboo

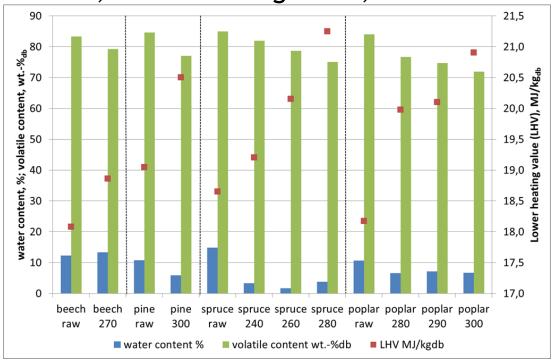


The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction

# WP3.2: Pilot tests (CENER)

#### Pilot torrefaction test results


|         | Biomass<br>type<br>(°C) | Process parameters |                     |                    |               |                     |                        |                     |                        |  |
|---------|-------------------------|--------------------|---------------------|--------------------|---------------|---------------------|------------------------|---------------------|------------------------|--|
| Biomass |                         | Feedstock          |                     |                    |               | Gas                 | Produ                  | Thermal             |                        |  |
| type    |                         | Humidity<br>(% wb) | Flow rate<br>(kg/h) | Nitrogen<br>(kg/h) | Temp.<br>(ºC) | Flow rate<br>(Kg/h) | Torr. degree<br>(% db) | Flow rate<br>(Kg/h) | consumption<br>(kJ/kg) |  |
| BEECH   | 270                     | 14                 | 350                 | 12                 | 212           | 106                 | 15                     | 256                 | 1.116                  |  |
|         | 280                     | 8                  | 350                 | 12                 | 225           | 85                  | 14                     | 277                 | 951                    |  |
| PINE    | 290                     | 14                 | 300                 | 12                 | 229           | 98                  | 17                     | 214                 | 1.351                  |  |
|         | 300                     | 13                 | 350                 | 12                 | 238           | 115                 | 19                     | 247                 | 1.278                  |  |
|         | 250                     | 12                 | 300                 | 12                 | 197           | 82                  | 13                     | 230                 | 957                    |  |
| STRAW   | 260                     | 11                 | 290                 | 12                 | 214           | 85                  | 16                     | 217                 | 1.051                  |  |
|         | 270                     | 11                 | 290                 | 12                 | 220           | 96                  | 20                     | 206                 | 1.100                  |  |
|         | 280                     | 10                 | 400                 | 12                 | 224           | 102                 | 14                     | 310                 | 972                    |  |
| POPLAR  | 290                     | 10                 | 400                 | 12                 | 231           | 113                 | 17                     | 299                 | 1.115                  |  |
|         | 300                     | 10                 | 400                 | 12                 | 240           | 135                 | 23                     | 277                 | 1.201                  |  |





### WP3.3: Feedstock and product analysis (OFI)

 Example for analysis of beech, pine, spruce and poplar torrefied pellets at different temperatures (water content, lower heating value, volatile content)



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

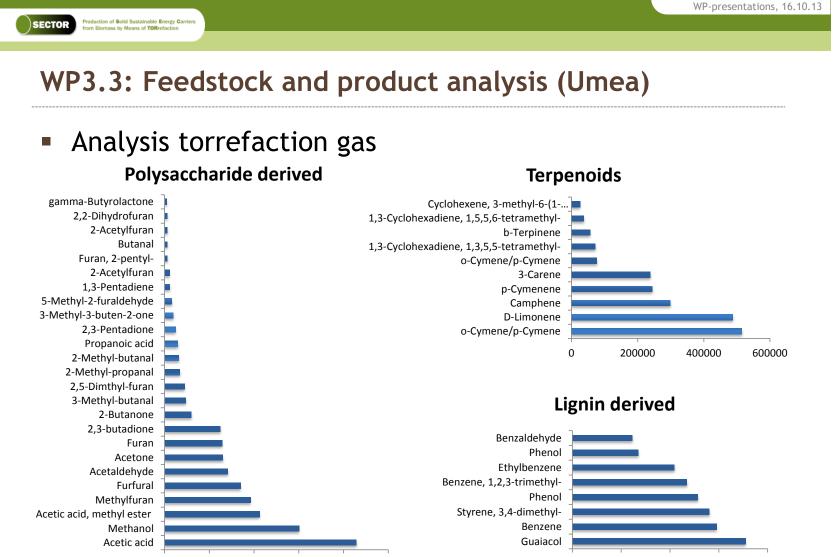
### WP3.3: Feedstock and product analysis (OFI)

- On-going analysis of received samples
- 55 samples received and 44 analyzed
- Data distribution
  - Excel file in member area on SECTOR homepage for all project partners to use; info mail about updating
- Data comparison
  - All analysis data from different laboratories should be collected • and distributed for comparison and evaluated
  - Suggestion: Data collection by OFI and distribution within data excel file



SECTOR

Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction


# WP3.3: Feedstock and product analysis (CENER)

Homogeneity of torrefied product during pilot production

|               | Homogeneit             | y of the process: Sa |                  |        |                       |       |        |           |                   |  |
|---------------|------------------------|----------------------|------------------|--------|-----------------------|-------|--------|-----------|-------------------|--|
| No.           | Sample                 | Big-bag code         | production hours |        | Elemental analisys (% |       | (% db) | Heat valu | Heat value (MJ/kg |  |
|               | number                 | Dig-Dug could        | Start            | finish | С                     | Н     | N      | HHV       | LHV               |  |
| 1             | 230                    | 12/007/TO03          | 10:45            | 11:45  | 54,0                  | 6,0   | 0,18   | 21,68     | 20,43             |  |
| 2             | 231                    | 12/007/TO04          | 11:45            | 12:36  | 53,8                  | 6,0   | 0,13   | 21,65     | 20,40             |  |
| 3             | 232                    | 12/007/TO05          | 12:36            | 13:22  | 53,7                  | 6,1   | 0,16   | 21,63     | 20,38             |  |
| 4             | 233                    | 12/007/TO06          | 13:22            | 14:09  | 53,4                  | 6,1   | 0,16   | 21,39     | 20,14             |  |
| 5             | 234                    | 12/007/TO07          | 14:09            | 14:55  | 53,4                  | 6,1   | 0,11   | 21,55     | 20,30             |  |
| 6             | 235                    | 12/007/TO08          | 14:55            | 15:41  | 53,4                  | 6,1   | 0,13   | 21,44     | 20,19             |  |
| 7             | 236                    | 12/007/TO09          | 15:41            | 16:20  | 53,4                  | 6,0   | 0,13   | 21,51     | 20,27             |  |
| 8             | 237                    | 12/007/TO10          | 16:20            | 17:11  | 53,3                  | 6,1   | 0,11   | 21,44     | 20,19             |  |
| 9             | 238                    | 12/007/TO11          | 17:11            | 17:55  | 53,5                  | 6,1   | 0,14   | 21,53     | 20,27             |  |
| 10            | 239                    | 12/007/TO12          | 17:55            | 18:37  | 53,5                  | 6,1   | 0,13   | 21,51     | 20,26             |  |
| 11            | 240                    | 12/007/TO13          | 18:37            | 19:23  | 53,3                  | 6,2   | 0,14   | 21,37     | 20,08             |  |
| 12            | 241                    | 12/007/TO14          | 19:23            | 20:08  | 53,1                  | 6,1   | 0,12   | 21,41     | 20,15             |  |
| Mean          |                        |                      |                  |        | 53,5                  | 6,1   | 0,14   | 21,51     | 20,25             |  |
| Maximum       |                        |                      |                  |        | 54,00                 | 6,20  | 0,18   | 21,68     | 20,43             |  |
| Minimum       |                        |                      |                  |        | 53,10                 | 6.00  | 0.11   | 21.37     | 20,08             |  |
| Averaged des  | veraged desviation (%) |                      |                  |        | 0,18                  | 0,04  | 0,02   | 0,08      | 0,09              |  |
| Maximun des   | viation (%)            |                      |                  |        | 0,52                  | 0,12  | 0,04   | 0,17      |                   |  |
| Analysis acce | ptance repeatab        | oility criteria      |                  |        | 0,39%                 | <0,2% | <0,03% | <0,12 MJ  |                   |  |

#### Differences are similar to analysis acceptance repeatability criteria





0 500000 1000000 1500000 2000000 2500000

The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

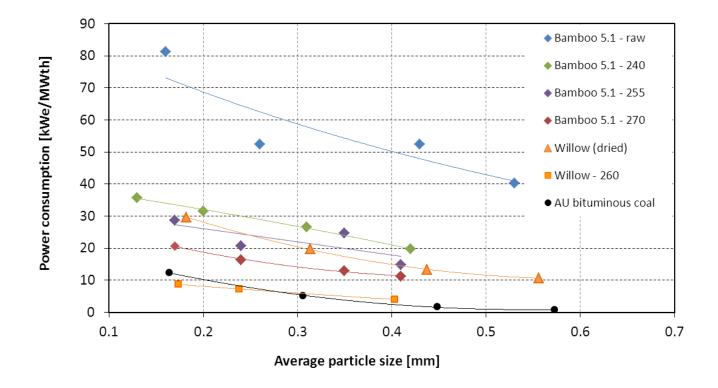
0

20000

40000

60000

80000


28.11.2013

Deliverable 1.2



# WP3.3: Feedstock and product analysis (ECN)

# Grindability torrefied bamboo





www.sector-project.eu

Production of Solid Sustainable Energy Carrier from Biomass by Means of TOR refaction

# WP3.4: Torrefaction process optimisation/integration (VTT)

- Harmonised mass and energy balances (with belt dryer) presented in the flow sheets of ECN, Topell and CENER processes
- All stand-alone processes were calculated with same principles.
- The product of all processes was TOP-pellet from wood.
- Energy need in drying for all cases was 4.0 MJ/kg evaporated  $H_2O$  for belt drier.
- The lower heating value (LHV) of wood for torrefaction processes was in all cases 7.6 MJ/kg and moisture content 50 wt% (from ECN data).
- The wood feed is in all cases 48.5 MW<sub>th</sub>
- Torrefaction temperature was 280°C in ECN and Topell cases and 270 °C in CENER case.
- LHV of TOP-pellets was 19.7 MJ/kg in ECN and Topell cases and 19.1 MJ/kg in CENER case (ECN data)
- Power need for grinding and pelleting was 18 kWh<sub>e</sub>/t TOP pellet and 64 kWh<sub>e</sub>/t TOP pellet, respectively
- Thermal efficiencies based on LHV values, without electricity use, were practically near the same i.e. 88-90 %
- Higher thermal efficiencies possible by using flue gas dryers with typical energy need 3.5 MJ/kg evaporated H<sub>2</sub>O.



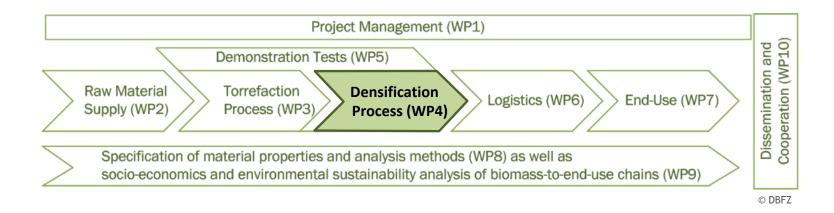
The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

# WP3.4: Torrefaction process optimisation/integration (VTT)

- Three main integration options: Saw mill, CHP, P&P mill
- Black box mass and energy balance data for calculations about integrated torrefaction
- Both feedstock and energy integration was explored
- The energy production of integrated torrefaction plants was based on biomass use (no energy use of natural gas or oil based product)
- The main advantages of integrations:
  - front end: wood acquisition, logistics, wood handling and pretreatment •
  - more efficient energy use compared to stand-alone plants ۰
  - favorable power and heat prices ٠
  - lower the production price of TOP-pellets (bigger boiler in integrated • concepts, scaleup and efficiency benefits)
- Subcontractor Pöyry (consultant) involved



SECTOR


# WP3.4: Torrefaction process optimisation/integration (VTT)

- Three main integration options: Saw mill, CHP, P&P mill
- Black box mass and energy balance data for calculations about integrated torrefaction
- Both feedstock and energy integration was explored
- The energy production of integrated torrefaction plants was based on biomass use (no energy use of natural gas or oil based product)
- The main advantages of integrations:
  - front end: wood acquisition, logistics, wood handling and pretreatment •
  - more efficient energy use compared to stand-alone plants ۰
  - favorable power and heat prices ٠
  - lower the production price of TOP-pellets (bigger boiler in integrated • concepts, scaleup and efficiency benefits)
- Subcontractor Pöyry (consultant) involved



SECTOR





# Production of Solid Sustainable Energy Carriers by Means of Torrefaction

# **DENSIFICATION (WP4)**



Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction

# WP4: Densification of torrefied biomass



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

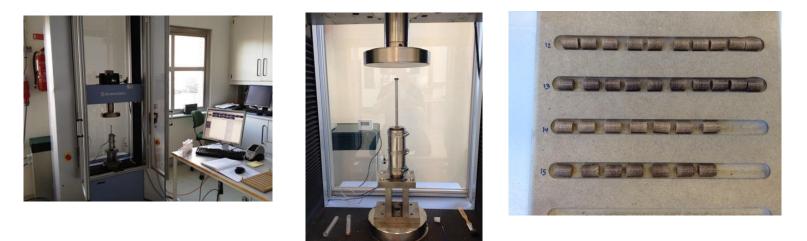
\_7

# WP4: Densification of torrefied biomass

#### Focus areas in WP4:

Production of Solid Sustainable Energy Carrie

rom Biomass by Means of TOR refaction


- Laboratory scale densification
  - Testing of torrefied biomass provided by SECTOR partners
  - Parametric study
  - Data collection and analysis  $\rightarrow$  Feedback and process optimization
- Bench/Industrial scale densification
  - Production in pilot plants of CENER, UMU, ECN, (Topell WP5)
  - Data collection and analysis  $\rightarrow$  Process improvement
- Product Quality
  - Compilation of analysis data from SECTOR-partners
  - Comparison of analysis data (in cooperation with WP8)



Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

# WP4: Laboratory scale densification

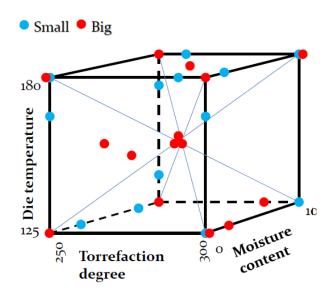
Set-up allows variation of: Temperature, pressure, particle size, moisture, and additive addition



Determination of: Compression energy, friction and quality analysis of pellets

Earlier tests have shown correlation between friction and energy consumption of industrial scale pellet press




# WP4: Laboratory scale densification

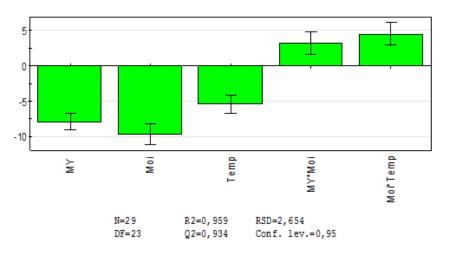
### Parametric study:

- Torrefaction degree expressed as mass yield (90.5% 71.1%)
  - Temperature 250 to 300 °C
- Moisture content (0 to 10%)
- Die temperature (125-180°C)
- Particle size (<1 and 1-2 mm)

Material torrefied at SLU (Sweden) in batch reactor

Pelletizing tests at DTI (Denmark)










# WP4: Parametric study torrefaction-densification

### Selected results: Friction / Energy consumption of pelletizing process



Scaled & Centered Coefficients for Wfric

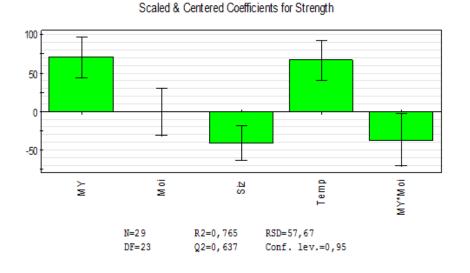
MY: Mass Yield - Torrefaction degree (90.5% - 71.1%)

Moi: Moisture content torrefied biomass (0 - 10 %)

Size: Particle size (<1 and 1-2 mm)

Temperature: Die temperature (125 to 180 °C)

 $\rightarrow$  The higher temperature, moisture and mass yield ( = lower torrefaction degree) - The less friction (energy consumption of pelletizing process)




38

Production of Solid Sustainable Energy Carrier from Biomass by Means of TOR refaction

# WP4: Parametric study torrefaction-densification

### Selected results: Pellet strength / Pellet quality



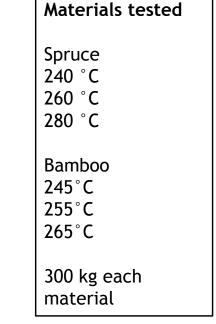
MY: Mass Yield - Torrefaction degree (90.5% - 71.1%)

Moi: Moisture content torrefied biomass (0 - 10 %)

Size: Particle size (<1 and 1-2 mm)

Temperature: Die temperature (125 to 180 °C)

 $\rightarrow$  Smaller particles, higher temperature and higher mass yield (= low torrefaction degree) resulted in higher pellet strength


# WP4: Pilot scale densification

### **Briquetting tests:**

Production of Solid Sustainable Energy Carrie rom Biomass by Means of TOR refaction



Material torrefied at ECN: Spruce and Bamboo Briquetting tests DTI in cooperation with CF Nielsen



- ightarrow Briquetting gets more challenging with increasing torrefaction degree
- $\rightarrow$  Keeping the briquette hot and under pressure for extended time improves quality
- $\rightarrow$  Good quality: Smooth surface, high density, stability but still optimization potential

Production of Solid Sustainable Energy Carrie

om Biomass by Means of TOR refaction

# WP4: Pilot scale densification

### Pelletization at SECTOR partners ECN, UMU/SLU, CENER

| Partner | Biomass type | Torr. Temp. (°C) | Durability |  |
|---------|--------------|------------------|------------|--|
| CENER   | BEECH        | 270              | 96         |  |
| CENER   |              | 280              | 90         |  |
| CENER   | PINE         | 290              | 95         |  |
| CENER   |              | 300              | 95         |  |
| CENER   | STRAW        | 250              | 84         |  |
| CENER   |              | 280              | 95         |  |
| CENER   | POPLAR       | 290              | 96         |  |
| CENER   |              | 300              | 96         |  |
| ECN     |              | 240              | 95         |  |
| ECN     | SPRUCE       | 260              | 98         |  |
| ECN     |              | 280              | 86         |  |
| ECN     |              | 245              | N.A.       |  |
| ECN     | BAMBOO       | 255              | N.A.       |  |
| ECN     |              | 265              | N.A.       |  |
| ECN     | POPLAR       | 270              | 98         |  |
| ECN     | PINE         | 270              | 92         |  |
| UMU     | WILLOW       | 285              | N.A.       |  |

Production of pellets is ongoing at SECTOR partners

"Demand and Supply scheme" for sample production and distribution

Data from production and quality tests will be compiled in a report

Data from lab and pilot scale tests will be reviewed

 $\rightarrow$  Slow start with many delay/problems but lots of activities and good results now



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

41

Production of Solid Sustainable Energy Carrie from Biomass by Means of TORrefaction

# WP4: Pilot scale densification

#### Large quantities have been produced in SECTOR project during last year:

#### **CENER:**

| Biomass | Torr.<br>Temp. | Material code                          |                                          |       | MATERIALS INVENTORY (Kg) |       |           |       |         |  |
|---------|----------------|----------------------------------------|------------------------------------------|-------|--------------------------|-------|-----------|-------|---------|--|
|         |                | Water                                  | PRODUCTION                               |       | DELIVERED                |       | AVAILABLE |       |         |  |
| type    | (°C)           | Chips                                  | Pellets                                  | Chips | Pellets                  | Chips | Pellets   | Chips | Pellets |  |
| BEECH   | 270            | CENER_Ref 2 - Beech_270_Chips_12092012 | CENER_Ref 2 - Beech_270_Pellets_17092012 | 458   | 4.283                    | 49    | 3.366     | 409   | 917     |  |
|         | 280            | CENER_Ref 1 - Pine_280_Chips_02102012  | CENER_Ref 1- pine_280_Pellets_29012013   | 30    | 2.339                    | 29    | 0         | 1     | 2.339   |  |
| _       | 290            | CENER_Ref 1 - Pine 290_Chips_21032013  | CENER_Ref 1 - Pine_290_Pellets_06062013  | 3.193 | 4.730                    | 0     | 3.304     | 3.193 | 1.426   |  |
|         | 300            | CENER_Ref 1 - Pine_300_Chips_22112012  | CENER_Ref 1- pine_300_Pellets_31012013   | 150   | 2.200                    | 149   | 383       | 1     | 1.817   |  |
|         | 250            | CENER_Straw_250_Chips_14022013         | CENER_Straw _250_Pellets _28022013       | 95    | 3.001                    | 0     | 3.001     | 95    | 0       |  |
| STRAW   | 260            | CENER_Straw_260_Chips_26062013         | CENER_Straw _260_Pellets_?               | 174   | 0                        | 0     | 0         | 174   | 0       |  |
| 2       | 270            | CENER_Straw_270_Chips_26062013         | CENER_Straw _270_Pellets_?               | 963   | 0                        | 0     | 0         | 963   | 0       |  |
|         | 280            | CENER_Poplar_280_Chips_29052013        | CENER_Poplar_280_Pellets_11072013        | 230   | 950                      | 120   | 110       | 110   | 840     |  |
| POPLAR  | 290            | CENER_Poplar_290_Chips_29052013        | CENER_Poplar_290_Pellets_10072013        | 205   | 1.588                    | 0     | 0         | 205   | 1.588   |  |
|         | 300            | CENER_Poplar_300_Chips_28052013        | CENER_Poplar_300_Pellets_09072013        | 219   | 853                      | 0     | 0         | 219   | 853     |  |
|         |                |                                        | SUBTOTAL                                 | 5.717 | 19.944                   | 347   | 10,164    | 5.370 | 9.780   |  |
|         |                |                                        | TOTAL                                    | 25    | .661                     | (10   | .511      | 15.   | .150    |  |
|         |                |                                        |                                          |       |                          |       |           |       |         |  |

ECN: Several hundred kg batches of torrefied spruce, bamboo

#### **UmU:** Upgraded torrefaction plant $\rightarrow$ very active now



## WP4 - Status

- End user requirements for quality of torrefied pellets
  - Data collection finished
  - Ongoing reporting
- Comparison of quality analysis from different labs (close cooperation with WP8)
  - Round Robin tests in cooperation with WP8 (finished)
  - Data collection from all densification partners (ongoing)
  - Reporting end of 2013
- Parametric study: Torrefaction and densification parameters influence on processing and quality
  - Experimental part completed
  - Data modeling and interpretation
  - How can data be used in project  $\rightarrow$  Feedback to SECTOR partners to optimize process



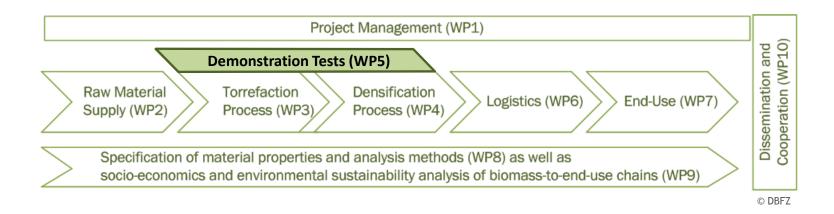


## WP4 - Status

- Screening of all torrefied sample in SECTOR for densification properties → Compilation of data, modeling and conclusions
  - Ongoing tasks (depending on availability of torrefied material)
  - Compilation of data / data analysis → Feedback to project partners
- Production of ton scale batches for logistics and end-user testing
  - Partners have been very active (CENER alone has produced more than 20t of torrefied pellets)
  - Ongoing production
- Mass and energy balance for different densification concepts
  - Data collection is in progress
  - Will be reported next year






# WP4 - Conclusions

- Hard start-up phase but densification activities are running very well now
- Densification is a complex tasks with many pitfalls but we have learned a lot and becoming better and better
- A lot of data available in SECTOR project → Data is being collected, analyzed and will be used to improve the process

 $\rightarrow$  Bring in your ideas/expectations to WP4 in the discussions today and tomorrow!







# Production of Solid Sustainable Energy Carriers by Means of Torrefaction

# **DEMONSTRATION TESTS (WP5)**



# **WP5: Introduction**

Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction

- Tasks under WP5
- Past activities
- Current status
- Outlook





# WP5: Tasks under WP5

- D5.1 100-200 tonnes batches of torrefied woody material for large scale logistics & end-use tests.
- D5.2 Tonnes of pelletised torrefied woody material for logistics and end user testing.
- D5.3 Working paper on general mass and energy balances of specific torrefaction concepts.
- D5.4 Mass and energy balances of the milling and densification process for the value chain analysis
- M4 Large scale batches of fully characterized densified torrefied feedstock for tests in WP6 and 7





# WP5: Past activities

- Production of several thousand of tons of torrefied wood pellets.
- Material used: Forest residue
- Delivery of material from:
  - Topell
  - external provider (stem wood)
- D5.1

| Partner    | Quantity (kg) | Provider             | Biomass       |
|------------|---------------|----------------------|---------------|
| USTUTT     | 4,000         | Topell               | Wood residues |
| USTUTT     | 4,000         | external<br>provider | Stem wood     |
| EON        | 10,000        | external<br>provider | Stem wood     |
| Vattenfall | 2x2,000       | external<br>provider | Stem wood     |

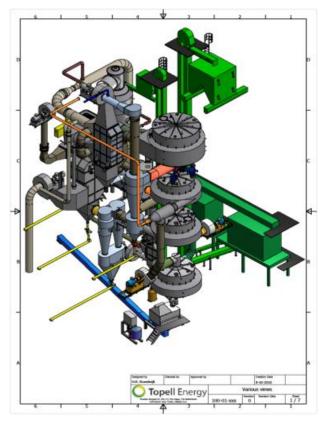


# WP5: Past activities

Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction

# D5.2

| Partner | Quantity (kg) | Provider             | Biomass       |
|---------|---------------|----------------------|---------------|
| DTI     | 10.5          | Topell               | Wood residues |
| OFI     | 600           | Topell               | Wood residues |
| TFZ     | 1,180         | Topell               | Wood residues |
| TFZ     | 1,100         | Topell               | Wood residues |
| TFZ     | 1,100         | external<br>provider | Stem wood     |
| BIOS    | 750           | external<br>provider | Stem wood     |
| BE2020  | 1,575         | external<br>provider | Stem wood     |


- D5.3 On going, calculations with different feedstocks
- D5.4 On going, new data after overhaul
- M4 Finished for WP6, still pending for WP7



# WP5: Past activities

Production of Solid Sustainable Energy Carrier from Biomass by Means of TORrefaction

Major overhaul plant



- Change combustor
- Heat integration
- Densification process
- Process finished

The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant

www.sector-project.eu

agreement n° 282826



# WP5: Current status

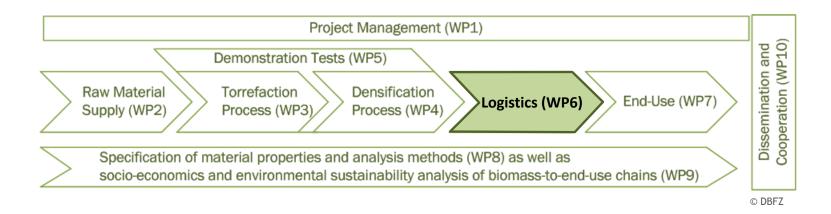
- Plant
  - Hot commissioning of combustor finished
  - Hot commissioning of torrefaction unit finished
  - Hot commissioning of densification process ongoing
- Process
  - Successful production runs 4-6 tons/h
  - Developing production recipies for different feedstocks
  - Several tons of pellets already produced
  - Optimisation of densification process





# WP5: Outlook

- Continue developing torrefaction recipies for different feedstocks
- Optimisation of densification process
- Paper on mass and energy balance of torrefaction concept
- Mass and energy balance densification process
- Complete pending shipments during Autumn 2013




### WP5: Outlook

- Questions?
- Thanks for your attention







# Production of Solid Sustainable Energy Carriers by Means of Torrefaction

# LOGISTICS (WP6)



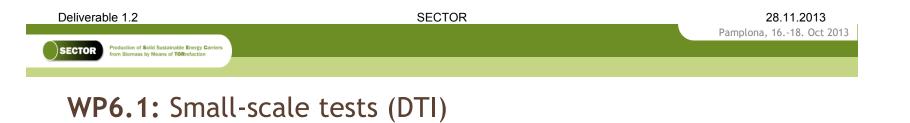
Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

# WP6.1: Small-scale tests (DTI)

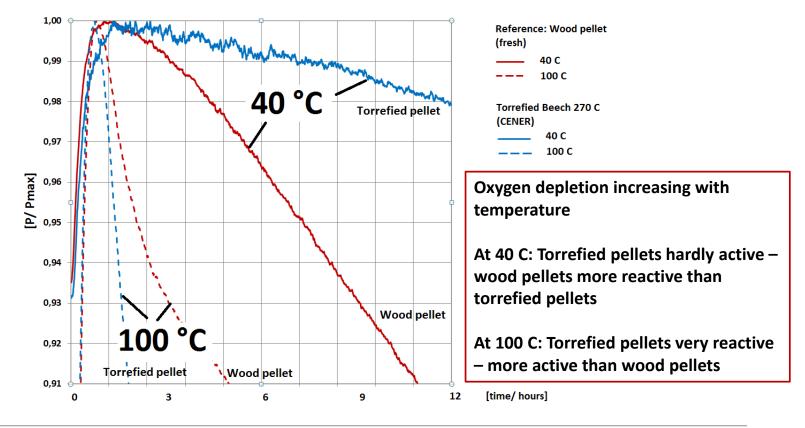
# Oxygen depletion of torrefied pellets

- Oxipress method: A "rapid" predictive tool to measure the oxidative stability of compounds susceptible to oxidation
- · Standard method in food industry
- 40 °C / 100 °C, 99,9% O2 , 5 bar
- Ca. 50 g of pellets (300 ml container)
- The faster the pressure decreases the faster is the oxygen consumption (i.e. the more "reactive are the pellets")





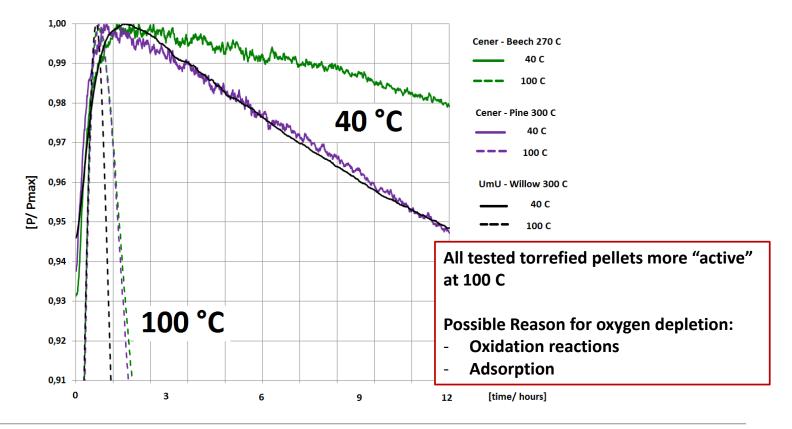



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

56




Oxygen depletion of torrefied pellets vs. wood pellets





# WP6.1: Small-scale tests (DTI)

Oxygen depletion of torrefied pellets





Production of Solid Sustainable Energy Carrier from Biomass by Means of TOR refaction

# WP6.1: Small-scale tests (VTT)

- Methods developed for small scale logistics performance characterisation have been tested in national torrefaction project.
- Methods have been and will further be developed, e.g. automatisation of rain exposure test.
- Experimental work will be started as soon as materials to be tested are delivered to VTT
  - Torrefied stem wood pellets from ECN
  - Wood residue pellets from Topell
  - Torrefied straw pellets from CENER



Climatic testing chamber for determination of equilibrium moisture content

 Dust explosion risks: Reporting of previous studies has been started and report will be finalised when other partners have identified the same risks. VTT will make the comparison of these risks.



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

59

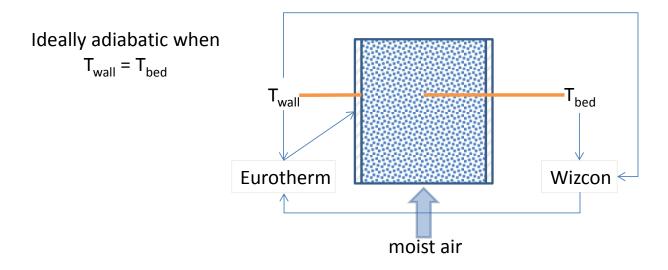
Production of Solid Sustainable Energy Carrier from Biomass by Means of TORrefaction

## WP6.1: Small-scale tests (UmU)

Hydrophobicity, climate chamber exposure, 11°C, 80%
 RH, preliminary results after 1 week exposure

|                    |         | Mass yield | Temperature | Residence  | Weight increase |
|--------------------|---------|------------|-------------|------------|-----------------|
| Biomass            |         | (%)        | (°C)        | time (min) | (%)             |
| Forest residue raw | Chips   |            | -           | -          | 14.31           |
| Forest residue     | Chips   | 87.3%      | 286         | 6          | 8.09            |
| Forest residue     | Chips   | 87.9%      | 286         | 12         | 7.52            |
| Forest residue     | Chips   | 80.2%      | 308         | 9          | 6.68            |
| Forest residue     | Chips   | 72.4%      | 325         | 6          | 7.09            |
| Forest residue     | Chips   | 72.2%      | 325         | 12         | 7.30            |
| Forest residue     | Pellets |            |             |            | 8.93            |

|            |         | Mass yield | Temperature | Residence  | Weight increase |
|------------|---------|------------|-------------|------------|-----------------|
| Biomass    |         | (%)        | (°C)        | time (min) | (%)             |
| Willow raw | Chips   |            | -           | -          | 14.58           |
| Willow     | Chips   | 93.2%      | 286         | 6          | 7.94            |
| Willow     | Chips   | 88.6%      | 286         | 12         | 8.05            |
| Willow     | Chips   | 82.8%      | 308         | 9          | 7.18            |
| Willow     | Chips   | 75.3%      | 330         | 6          | 7.13            |
| Willow     | Chips   | 65.4%      | 330         | 12         | 7.00            |
| Willow     | Pellets |            |             |            | 9.48            |

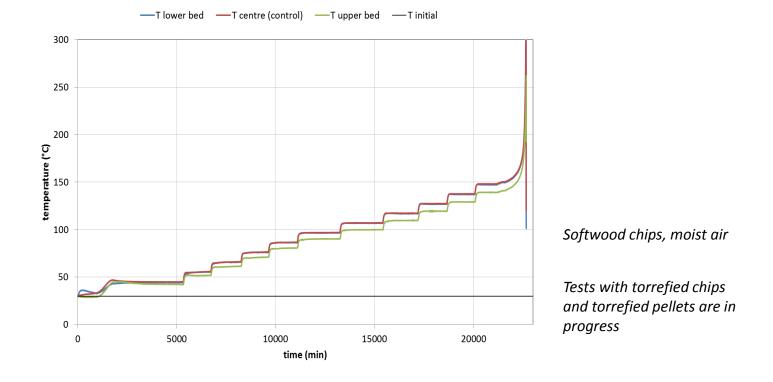





# WP6.1: Small-scale tests (ECN)

### Self ignition tests and exothermal behaviour

- Torrefaction Batch Reactor with additional controls to create adiabatic conditions is operational
- Set-up allows assessment of tendency to self-heat (self-heating ≠ self-ignition)








# WP6.1: Small-scale tests (ECN)

Self ignition tests and exothermal behaviour





# WP6.2: Outdoor storage and handling tests (Vattenfall)

Location:

Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

- Vattenfall's R&D centre in Älvkarleby, Sweden (~150 km north of Stockholm)
- Test volumes:
  - 2 tonnes torrefied poplar
  - 2 tonnes torrefied spruce
- Storage method:
  - "Piece of cake" storage construction applied to simulate larger volumes
- Test period:
  - June 2013 to February 2014





Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction

### WP6.2: Outdoor storage and handling tests (Vattenfall)

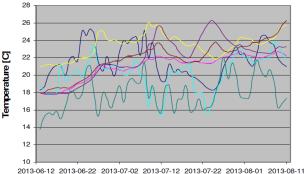


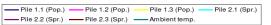
Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

## WP6.2: Outdoor storage and handling tests (Vattenfall)

- Weather data from Swedish Metrological and Hydrological institute (daily averages)
  - Temperature, pressure, relative humidity, wind speed/direction, solar radiation
- Pile temperatures continuously logged
  - 3 thermocouples in each pile at different heights + 1 logging ambient temperature
- Solid samples on monthly basis (inside + surface of piles)
  - Heating value
  - Proximate analysis (moisture, ash, volatiles, fixed carbon)
- Additional solids sample analyses at start/mid/end of test period
  - H, C, N, Cl, S
  - Ash melting temperatures
  - Bulk density
  - Mechanical durability
- Leach water analyses (according to specification as distributed/ discussed within project group in May)




Production of Solid Sustainable Energy Carrier


rom Biomass by Means of TOR refaction

### WP6.2: Outdoor storage and handling tests (Vattenfall)

- Test program progressing according to plan too early / too few samples to draw definitive conclusions:
  - Inside piles no apparent degradation of pellets
  - On surface of piles slight degradation (pellets swollen and more porous in consistency)
  - Initial samples indicate increase in pellet moisture especially on surface but inside piles as well (the spruce pellets seem to be more susceptible to moisture than the poplar pellets)
  - Slight temperature increase in piles observed but so far difficulty to conclude if it is solely ambient temperature dependent
- Handling tests (will be carried out before end October)
  - Critical angle of conveyor belts
  - Dust formation dropping/handling of pellets (simulating transition points)
  - Angle of repose
  - Etc...
- Further input and suggestions regarding possible handling tests from partners still welcome







| Parameter        | Unit    | ECN    | Topell |
|------------------|---------|--------|--------|
|                  |         | Poplar | Spruce |
| Moisture (ar)    | [%]     | 3.9    | 3.9    |
| Ash (ar)         | [%]     | 0.7    | 0.4    |
| Volatile (ar)    | [%]     | 75.2   | 71.1   |
| Fixed cabon (ar) | [%]     | 20.3   | 24.6   |
| LHV (ar)         | [MJ/kg] | 19.28  | 19.95  |
| LHV (db)         | [MJ/kg] | 20.16  | 20.84  |
| Bulk density     | [kg/m3] | 701    | 708    |
| Mech. Durability | [%]     | 97.5   | 96.4   |

Temperature profiles in piles as logged between early June to early August (above). Initial pellet data as analysed at arrival (below).

## WP6.2: Outdoor storage and handling tests (EON)

### Two outdoor storage piles were built in June 2013:

### Peaked-topped pellets

Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

- Model the formation of pellets after it has been delivered.
- 4 tonnes
- 2.34 x 2.36 x 1.5 m



### Flat- topped pellets

- Model the formation of pellets after compaction (though no compaction has occurred)
- 3 tonnes
- 2.34 x 2.36 x 1.5 m





## WP6.2: Outdoor storage and handling tests (EON)

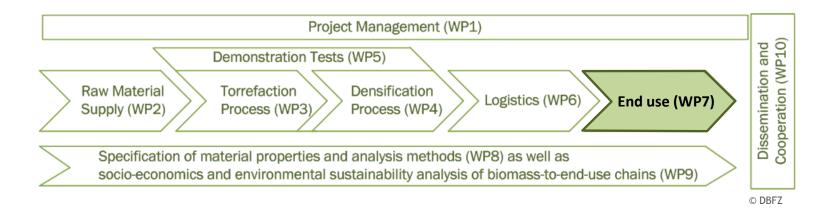
In-situ measurements

Production of Solid Sustainable Energy Carrier from Biomass by Means of TOR refaction

- Temperatures in piles
- Weather data (ambient temp, humidity, wind speed, wind direction, rainfall)
- Sampling
  - Surface and middle of each pile
- Physical parameter tests
  - Pellet durability
  - Diameter
  - Particulate size
  - Particle distribution
- Proximate Analysis
  - Moisture
  - Ash
  - Volatiles
  - Calorific Value






Production of Solid Sustainable Energy Carrier from Biomass by Means of TORrefaction

## WP6.2: Outdoor storage and handling tests (EON)

Pellet durability as function of time







# Production of Solid Sustainable Energy Carriers by Means of Torrefaction

# END USE(WP7)



Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

### WP7.1 Milling & feeding (USTUTT, ECN, UmU, DB): Results and work planning status

- Milling tests performed at USTUTT in a hammer mill (200kg/h):
  - Torrefied pellets from Topell (woodmix), ECN (Spruce), CENER (Beech and Pine), and reference white wood pellets.
  - Preliminary results show significantly lower energy consumption for torrefied pellets with finer and more spherical material output.
- Preliminary results of feeding tests for both 20kW and 500kW PF burners at USTUTT show no bridging and agglomeration problems.

| Task start<br>date | Task end date | Deliverables/Due<br>date   | Deliverable<br>status | Justifications/<br>Impact of<br>delay/Remedies |
|--------------------|---------------|----------------------------|-----------------------|------------------------------------------------|
| 01.03.2013         | 30.10.2014    | Report due<br>October 2014 | As planned            | None                                           |



Production of Solid Sustainable Energy Carrier from Biomass by Means of TOR refaction

#### SECTOR

# WP7.2 Co-firing in pulverized-fuel boilers (Procede, USTUTT, EON, Vattenfall, RWE, ECN, IEN): Results and work planning status

- Co-combustion tests (10%, 25%, 50%, 75% as well as 100%) at USTUTT's 20kW and 500kW facilities with focus on emissions, burnout, staging, deposition, fouling and corrosion.
  - Torrefied pellets from Topell (woodmix), ECN (Spruce), CENER (Beech and Pine) and reference white wood pellets. Brown Coal (LaTBK) and Colombian hard coal (El Cerrejon).
  - Preliminary results show that torrefaction improves flame stability and potentially burn-out.
- Lab-scale combustion experiments at ECN (100% thermal share, endpoint kinetics) performed with materials from ECN, CENER and an external provider
- RWEInnogy's role to change to advisory role due decision to pull out of biomass business.



| Task start<br>date | Task end<br>date | Deliverables/Due date                                                                                   | Deliverable<br>status | Justifications/<br>Impact of<br>delay/Remedies   |
|--------------------|------------------|---------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------|
| 01.03.2013         | 30.09.2014       | D7.5 Report on torrefied biomass<br>co-firing tests with lignite and<br>hard coal/ <b>December 2013</b> | Delayed > 1<br>month  | Late fuel delivery<br>New Date:<br>February 2014 |
|                    |                  | Updated report with materials from an external provider /April 2014                                     |                       |                                                  |

KSVA(500kW), USTUTT

roduction of Solid Sustainable Energy Carrie om Biomass by Means of TORrefaction

# WP7.3 (Co-)gasification in entrained flow gasifiers (UmU, Vattenfall, ECN): Results



#### From Deliverable D7.2

- Torrefied briquetted and milled spruce, compared with ref. spruce
- Feeding OK, performed well
- Good gas composition
  - Torrefied material is more reactive, may well and generally be used as a feedstock for EFG
- No show-stoppers have evolved (Vattenfall)
- Fuel mixing as well as additives may be utilized to control ash and slag behavior in the EFG process



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

www.sector-project.eu

Production of Solid Sustainable Energy Carrier from Biomass by Means of TOR refaction

WP7.3 (Co-)gasification in entrained flow gasifiers (UmU, Vattenfall, ECN: Adjustments/work planning status

- Adjustment to work plan due to Buggenum plant (Vattenfall) closure.
- Vattenfall presents the results from tests performed outside SECTOR in 2012 and further tests to be performed at UmU based on experiences from Vattenfall's tests.

| Task start date | Task end date | Deliverables/Due date                                                                                                   | Deliverable<br>status |
|-----------------|---------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------|
| 01.03.2013      | 30.09.2014    | D7.2 Report on short to long term gasification tests/ August, 2013.                                                     | completed             |
|                 |               | D7.6 Fluxing strategy, ash fusion<br>temperatures, and gasification<br>tests in a lab-scale<br>simulator/December 2013. | As planned            |



Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

### WP7.4 Small-to-medium scale pellet boilers (BIOS,TFZ,BE2020): Status

- Performance and evaluation of lab-scale reactor tests with 3 different kinds of torrefied pellets (BIOS): completed
- Definition of the testing procedure for small-scale combustion tests (All Partners): completed
- Adaptation of the particle layer model for CFD-simulation of softwood pellets combustion to torr-biomass combustion (BIOS): completed
- Test runs with softwood pellets and torr-pellets in a 21 kW overfed pellet boiler on which the CFD simulations are based to gain validation data (BIOS): test runs completed, evaluation ongoing



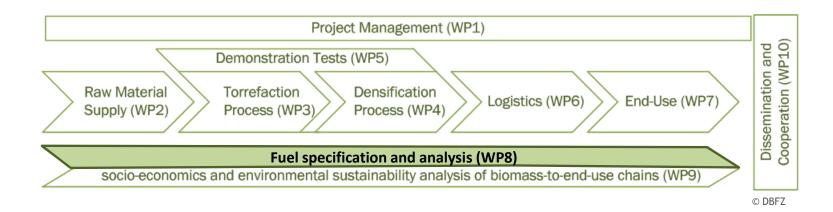
Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction

### WP7.4 Small-to-medium scale pellet boilers (BIOS,TFZ,BE2020): Work planning status

| Task start<br>date | Task end<br>date | Deliverables/Due date                                                                                                      | Deliverable<br>status | Justifications/<br>Impact of<br>delay/Remedies                           |
|--------------------|------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------|
| 03.09.2012         | 30.04.2014       | D.7.3 Combustion<br>behavior of torrefied<br>pellets in pellet boilers<br>and corrosion load on<br>chimneys/ August, 2013. | delayed>1<br>month    | delayed delivery of<br>the torrefied fuel/<br>New Date:<br>December 2013 |
|                    |                  | D7.4 Combustion<br>screening of three pellet<br>boiler technologies and<br>fuel assessment<br>trials/August 2013.          | delayed>1<br>month    | delayed delivery of<br>the torrefied fuel/<br>New Date:<br>December 2013 |



Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction


# WP7.5 Production of chemicals or biomaterials (ECN, VTT): Results and work planning status

- Differences in the amounts and compositions of condensates between the feedstocks and the temperature phases were obtained.
- The high final temperature proved to be critical, because at 290 °C strong exothermic reactions occurred decreased the yield of torrefied material and produced tarry condensates.
- Condensates obtained at <240 °C are promising, for example, to be used as biodegradable pesticides to replace synthetic ones.
- The condensates obtained at higher temperatures may have potential in wood protection.
- The quality and utilization potential of the condensates can be affected by the temperature phases.

| Task start date | Task end date | Deliverables/Due date                                                        | Deliverable<br>status                         |
|-----------------|---------------|------------------------------------------------------------------------------|-----------------------------------------------|
| 01.08.12        | 20.01.14      | D7.1 Report on the production<br>of chemicals and biomaterials/<br>June 2013 | Completed and<br>draft uploaded<br>July, 2013 |







# Production of Solid Sustainable Energy Carriers by Means of Torrefaction

# FUEL SPECIFICATION AND ANALYSIS (WP8)



### Task 8.1 Fuel properties & investigation of "non-standard" parameters - Results

- Round Robin test I conducted (sample shipment 07/2012)
  - D8.1 Report Round Robin I Validation of "standard" test methods
- 43 Participants
- 18 Countries

Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

- 11 Parameter
- 19-41 Participants per parameter

|                 | Parameter                             | Method/ Standard     |
|-----------------|---------------------------------------|----------------------|
|                 | Bulk density                          | acc. EN 15103        |
|                 | Mechanical durability                 | acc. EN 15210-1      |
|                 | Moisture content                      | acc. EN 14774-1 or 2 |
|                 | Ash content                           | acc. EN 14775        |
| Calorific value |                                       | acc. EN 14918        |
|                 | Content of chlorine and sulphur       | acc. EN 15289        |
| er              | Content of volatile matter            | acc. EN 15148        |
|                 | Content of carbon, hydrogen, nitrogen | acc. EN 15104        |
|                 | Content of major elements             | acc. EN 15290        |
|                 | Content of minor elements             | acc. EN 15297        |
|                 | Ash melting behaviour                 | acc. CEN/TS 15370    |





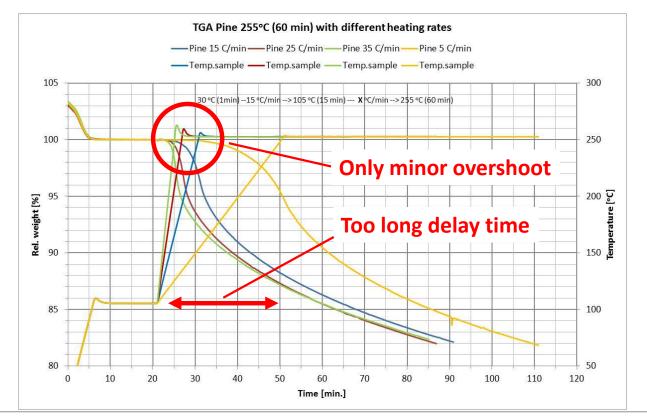
# Task 8.1 RR I - Findings

- Ash content, water content, chlorine and sulfur content, CHN analysis - comparable to solid biofuels performance
- LHV reproducibility limit is higher than for solid biofuels
- Ash melting behavior same difficulties as for solid biofuels
- Minor elements low concentration/detection limits as for solid biofuels
- Mercury and Antimony too less results as for solid biomass





## Task 8.1 New method development


- TGA method (ECN)
- Leaching behavior (VTT)
- Hydrophobicity water absorption and degree of torrefication (OFI)
- NIR Spectroscopy (SLU)
- Particle size distribution and flowability properties for both pellets and powder (TFZ)
- Grindability, Hardness (DBFZ)





# Task 8.1 Thermogravimetric analysis (ECN) - Results

TGA profile based on heating rate comparison testing



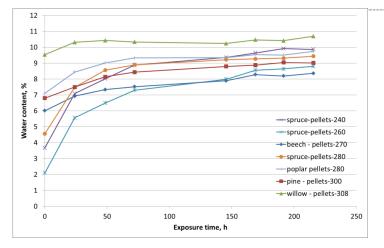




## Task 8.1 Leaching behavior (VTT) - Results

- 3 waters from immersion tests of national research project "Torrefaction of woody biomasses as energy carriers for the European markets"\* were analysed
  - Wood leachate (Pine wood pellets)
  - Wood 245C leachate (Torrefied whole tree wood chips, coniferous)
  - CENER 273C leachate (Torrefied beech wood)
- Results:

|                                                    | Wood | Wood 245C | CENER 273C |
|----------------------------------------------------|------|-----------|------------|
| рН                                                 | 5.9  | 4.8       | 6.23       |
| TOC, ppm                                           | 220  | 390       | 405        |
| TC, ppm                                            | 230  | 392       | 425        |
| COD, mg/l                                          | 600  | 1070      | 1285       |
| Solids content , mg/l                              | 420  | 100       | 92         |
| Water-soluble low-molecular organic compounds, wt% | 0.00 | 0.00      | 0.00       |


#### \*Project report available <a href="http://www.vtt.fi/inf/pdf/technology/2013/T122.pdf">http://www.vtt.fi/inf/pdf/technology/2013/T122.pdf</a>




Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction

#### SECTOR

### Task 8.1 Hydrophobicity - water absorption (OFI) - Results





- Exposure tests
  - Saturated NaCl solution -73% rel. Humidity
  - Tests with higher rel. humidity

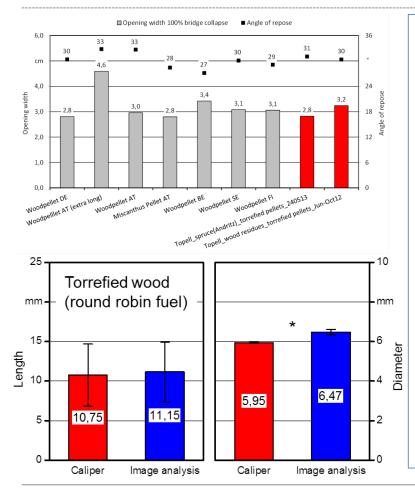
- Absorption tests
  - Water immersion (15 min)
  - Problematic in handling
  - With torr. chips to be repeated



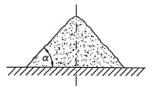
The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826



## NIR Methode (SLU) - Results


- Properties of torrefied materials can be predicted with high accuracy (e.g. molecular ratio; contents: energy, ash, moisture, volatiles, etc.)
- fast techniques to monitor and control torrefaction processes




Production of Solid Sustainable Energy Carrie

rom Biomass by Means of TOR refaction

### Task 8.1 Particle size and flowability (TFZ) - Results



- Bridging (Movable floor with expandable opening - direct measurement)
- Angle of repose (acc. FEM 2581)



Particle size

 Image analysis versus caliper measurement

Production of Solid Sustainable Energy Carrier from Biomass by Means of TOR refaction

## Task 8.1 Hardness (DBFZ) - Results

- Definition: power of resistance to fracture
- Development of a measurement methodology
- Variation of installed equipment with different load settings



standard procedure - point loading

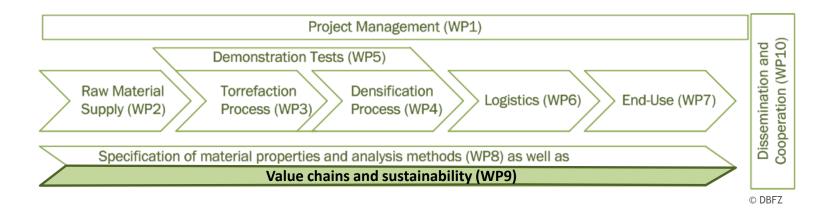


1st modification - area loading



Production of Solid Sustainable Energy Carrier from Biomass by Means of TOR refaction

### Task 8.2 Development of material safety data sheet (DBFZ)


- Requirements for MSDS for torrefied material according EU REACH published
- Further input from WPs and industry required

Task 8.3: Preparation of CEN and ISO product standards (VTT)

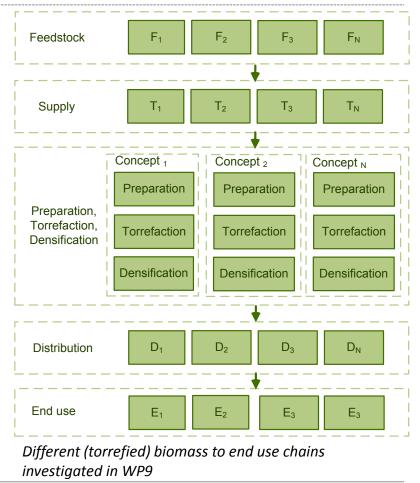
- Results
- ISO 17225-1 General requirements (final vote phase)
  - All values agreed and final voting 24 October to 24 December
  - To be published in the beginning of year 2014 as EN ISO standard and EN 14961-1 will be withdraw
- ISO 17225-8 (tbc) Graded thermally treated densified biomass fuels (WI phase)
  - Proposal for ISO/TC 238 work item (WI) has been sent to ISO.
  - Work will start in the beginning of 2014 under WG 2 led by Eija Alakangas, VTT and will finish in 2016.







Production of Solid Sustainable Energy Carriers by Means of Torrefaction


# VALUE CHAINS AND SUSTAINABILITY (WP9)



### **WP9** objectives

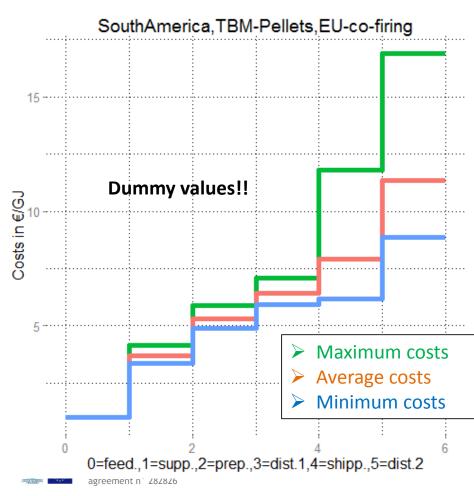
Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

- WP9 aims to assess the environmental and socio-economic impacts of torrefied solid biomass in different value chains
- Each chain is characterized by certain properties regarding feedstock, torrefaction technology, transportation options (mode and vehicle selection) and storage strategy (shape and location), types of end-use and other parameters. Four basic types of the torrefaction technologies (rotary-drum movingbed, torbed, fluidised-bed) will be considered.
- Building on these chains selective deployment scenarios for energy supply structures based on torrefaction up to 2030 will be analysed.





# WP9 D9.3 results

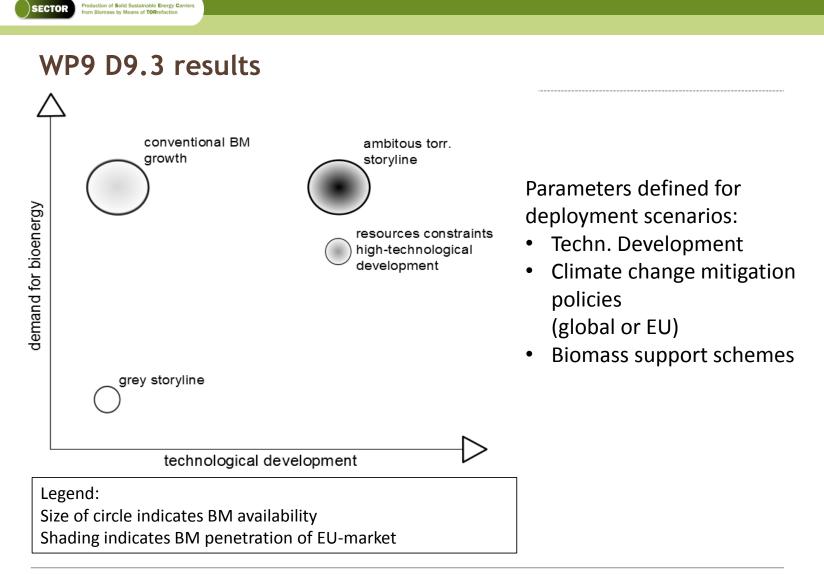

- Methodological approach for the simulation of deployment scenarios of torrefied biomass
  - Structure of generic biomass-to-end-use chain assessment
  - Theoretical background of the realisation of the software tool BioChainS
  - Storyline development for calculation of scenarios
  - First biomass-to-end-use chain calculations with !dummy values!



### WP9 D9.3 results

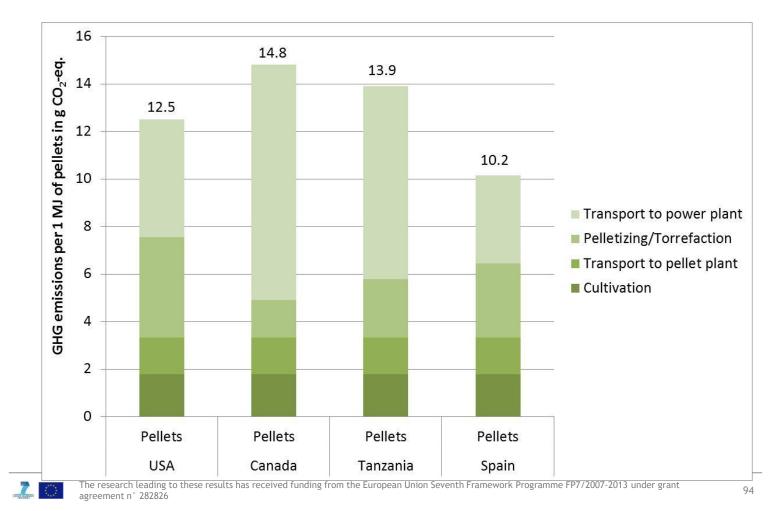
Production of Solid Sustainable Energy Carr

om Biomass by Means of TORrefacti




### Structure of results:

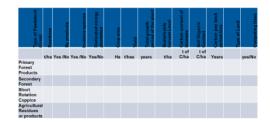
- Origin & Feedstock
- Technology
- End user type
- Year & Scenario


Range of results through probability distributions:

- Distances & Transport modes
- Torrefaction plant size
- Central or mobile comminution
- Primary fuel used for heat demand of torrefaction plant (Gais/Oil/BM)

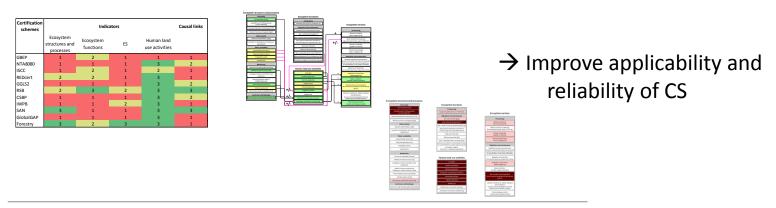


Production of Solid Sustainable Energy Carrier from Biomass by Means of TORrefaction


### WP 9 D9.4 results I - GHG-emissions per MJ supplied pellets





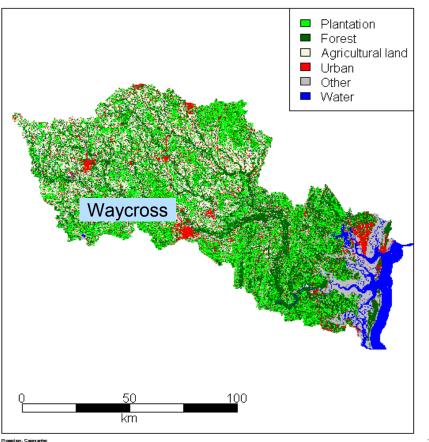

### Task 9.4: 1<sup>st</sup> Results of Sustainability Assessment

#### Development of a new indicator matrix to analyse iLUC risks of potential feedstocks



### $\rightarrow$ Ranking of iLUC risk

#### Review of criteria & indicators in certification schemes




The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2 agreement n° 282826

Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

### Task 9.4: Environmental assessment

### Satilla watershed



Projection, Geographic Constrate System JACO 1929 UTM Lone 17N Data Source, USC S Castled by, Maye

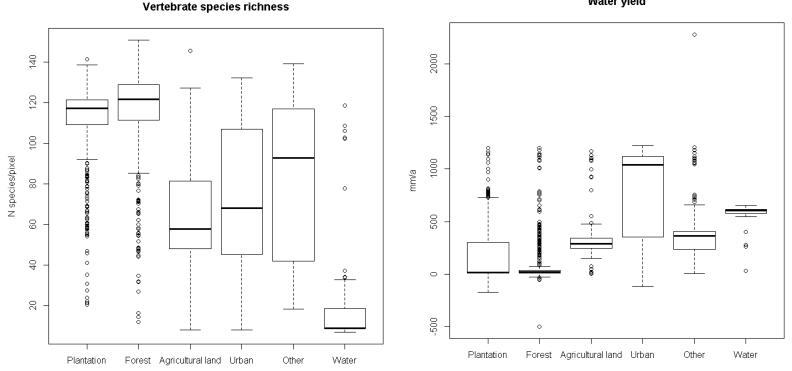
### Southern USA (Georgia)



### Land use/land cover:

- ~26 % pine plantations and harvested forest
- ~30 % forest
- ~16 % agricultural land

### Feedstock:

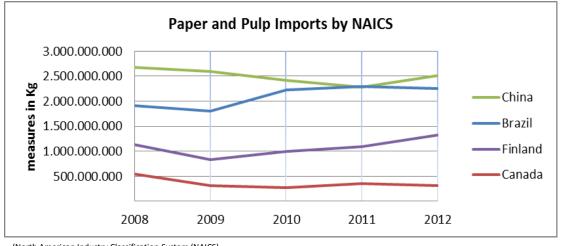

Pine poles (previously used as pulpwood)

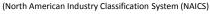
n Seventh Framework Programme F

Production of Solid Sustainable Energy Carrie from Biomass by Means of TOR refaction

Water yield

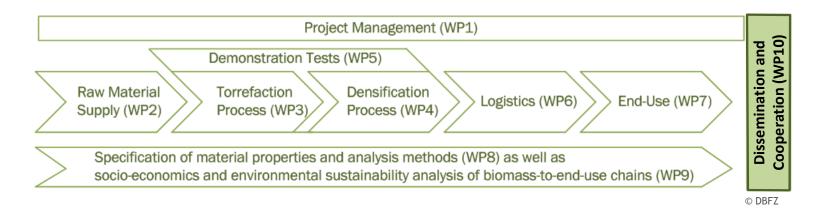
### **Biodiversity and water availability - preliminary results**





- Pine plantations have a lower vertebrate biodiversity than forests, but higher values than agricultural land
- Water yield (runoff and infiltration) are slightly higher for plantations than forests

Production of Solid Sustainable Energy Carriers from Biomass by Means of TORrefaction

## Task 9.4: Qualitative Assessment of iLUC effects in Georgia


| Current use of Georgia's pine plantations: | mainly pellet production                   |
|--------------------------------------------|--------------------------------------------|
| Previous use:                              | pulp & paper production                    |
| Current demand for paper:                  | constant to increasing                     |
| iLUC-effect:                               | in pulp & paper <b>exporting countries</b> |











## Production of Solid Sustainable Energy Carriers by Means of Torrefaction

## DISSEMINATION AND COOPERATION(WP10)



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826



## Task 10.1 - Workshop 1

## 1st SECTOR workshop in Milan as a Side Event at the EU BC&E 2012 21.06.2012

### "Market Implementation of a new Solid Biofuel and its midterm Prospects"









The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826



### Task 10.1 - Workshop 2

### 2nd SECTOR workshop in Graz



### "International workshop: Torrefaction of biomass"





bio<mark>energy</mark>2020+

**IEA Bioenergy** 

Task 32 and Task 40



The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement n° 282826

SECTOR

28.11.2013

## Task 10.2 - Dissemination

### 7 posters

25 presentations

1 workshop

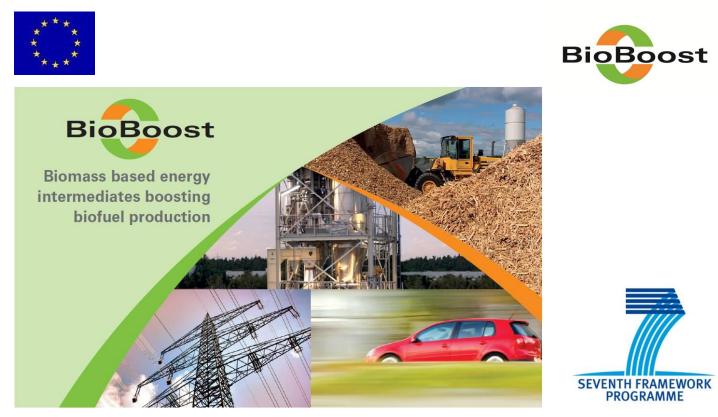
## 1 exhibition

ISO TC 238 (Solid biofuels) Meeting WG 4+5 ISO TC 238 (Solid biofuels) Convenor Meeting World Bioenergy 2012 IEA Bioenergy Conference VGB-Konferenz "Kraftwerke im Wettbewerb 2013" World Biomass Power Markets ENERGY EUROPE EU BC&E 2013 - 21st European Biomass **Conference & Exhibition** AEBIOM European Bioenergy Conference International VDI Conference – Biomass to Energy



Annex I

28.11.2013




Task 10.3: Integration into the "BIODAT" database

- First data sets presented in BIODAT
- chemical and physical characteristics
- template updated
- results of Round Robin included

| Property       ref.       Unit       Value RSD       Det limit Laboratory Date of analysis Method (standard for analysis)         Standards right name<br>Contry of goldes( one)       Detefed from Pelids       Netherlands       Nethorlands       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SECTOR                               |                                       | Fuel properties            |                   |               |           |           |               |                    |                 |              |               |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|----------------------------|-------------------|---------------|-----------|-----------|---------------|--------------------|-----------------|--------------|---------------|-----------------|
| Madatory information       Consider of momental status       Montered and provide status       Property       ref.       Unit       Value       RSD       Det. limit Laboratory Date of analysis Method (standard for analysis Method (st                                                                                                        | SECIOR                               |                                       |                            | Unit Value        | RSD Det. limi | it Labora | atory Da  | te of analysi | s Method (s        | andard for an   | alysis)      |               |                 |
| Aff code and build of a production of first produced take of sampling base of production of first produced take of sampling base of production of first produced take of sampling base of production of first produced take of sampling base of production of first produced take of sampling base of production of the booms and the sampling base of production and social results.       Characterization of first produced take of sampling base of production of the booms and the sampling base of production and social results.       Characterization of the booms and the sampling base of production of the booms and the sampling base of the booms and the same as produced by anore data asamplice dind the same as produced by and the same as pro                                                  |                                      |                                       | Moisture of Physical chara |                   |               |           | _         |               |                    |                 |              |               |                 |
| During in grade (rated ref)       And control         Deer graduation (refer)       Sold, Bodules         United ref produced, date of sampling)       1.5472         Carlog of interview       Sold, Bodules         Wood, processing, inderly       Deer interview, 1.3         Machine and financially untreated wood residues       Mode processing, inderly         Probabilis of material:       Definition (R)         Common Statistics       Bits of material:         Common Statistics       Definition (R)         Definition (R)       Torrefed woodrips and wood residues         Statistics       Torrefed woodrips and wood residues         Statistics       Definition (R)       mg/kg (dry)         Statistics       Definition (R)       mg/kg (dry)         Carloon       Machine (R)       mg/kg (dry)       Machine (R)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                       | Ash conter Property        |                   | Value         | RSD       | Det. limi | t Laboratory  | Date of analy      | sis Method (sta | ndard for an | alysis)       |                 |
| Control       Petherianiss       Petherianiss       Property       ref.       Unit       Value RSD       Det. limit Laboratory Date of analysis Method (standard for analysis Method (                                                                                               |                                      |                                       | Ash conter Dimension D     | enties            |               | -         |           |               |                    | -               |              | -             |                 |
| State depression       State depression       State depression       Value response       Property       ref.       Unit       Value RSD       Det. limit Laboratory Date of analysis Method (standard for                                                                                                         |                                      |                                       |                            | Chomical analysis |               |           |           |               |                    |                 |              |               |                 |
| Bidd Duckes         Wint         Bidd Duckes         Wint         Unit         Unit         Unit         Laboratory         Det         Limit Laboratory         Det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                                       | Volatile ma Dimension, L   | onennear analysis |               |           |           |               |                    |                 |              |               |                 |
| Columator (Model)       Model processing industry         Voluntary information         Columator information         Columator information         Columator (Minogenessing industry)         Voluntary information         Columator informatinformation         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                       |                            | Property ref.     | Unit          | Value     | RSD       | Det. limit    | Laboratory         | Date of ana     | ysis Metho   | od (standard  | for analysis    |
| Induction yn rinteled ynod residues       Mitrogen Amount of finas       Fluorine (F)       mg/kg (dy)       218       104       RR Sector P       June-August 2012 EN 15289:2011 Solid biofuels         columatery information       Ended wood/ps and wood residues       Bard demany       Choirne (C)       mg/kg (dy)       218       104       RR Sector P       June-August 2012 EN 15289:2011 Solid biofuels         control word finas       fem pelles of foresed wood/ps and wood residues       Bard demany       Choirne (C)       mg/kg (dy)       218       104       RR Sector P       June-August 2012 EN 15289:2011 Solid biofuels         control word finas       fem pelles of foresed wood/ps and wood residues       Baronine (Br)       mg/kg (dy)       224       86       RR Sector P       June-August 2012 EN 15290:2011 - Solid biofuels         contro word finas       fem melles of foresed wood/ps and wood residues       Silicon (S)       mg/kg (dy)       224       86       RR Sector P       June-August 2012 EN 15290:2011 - Solid biofuels         contro word fina name       in name       Silicon (S)       mg/kg (dy)       267       81       RR Sector P       June-August 2012 EN 15290:2011 - Solid biofuels         coture of fue/biomass information:       fopall       Silicon (R)       mg/kg (dy)       267       81       RR Sector P       June-August 2012 EN 15290:2011 - Solid biofuels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ubcategories (select one)            |                                       |                            | Halogenides       |               |           |           |               |                    |                 |              |               |                 |
| With bark       With bark         Oluntary information         coluntary information         table of material:         Columative name         Early and dispontion         maniful coation         maniful coation         et al of an material:         et al of an material:         me         reduct on module         and an early and material:         me         reduct on module         me         reduct on module         mame         reduct on module         defase man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                       |                            | U U               | malka (day)   |           |           |               |                    |                 |              |               |                 |
| Sulpture       Sulpture       Additives, type       Bind in G(D)       mg/kg (dr)       210       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       164       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      |                                       | runogen                    | ( )               |               |           |           |               |                    |                 |              |               |                 |
| Columatary information         Constraint         mg/kg (dy)         mg/kg (dy) <thmg (dy)<="" kg="" th="">         mg/kg (dy)</thmg>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | With_bark                             | Sulphur Additions type     | Chlorine (CI)     | mg/kg (dry)   | 218       | 104       |               | RR Sector F        | June-August     | 2012 EN 15   | 289:2011 Soli | d biofuels - [  |
| Calorifie / Interfail:       Control / Interfail:       Calorifie / Interfail: <thcalorifie interfail:<="" th=""> <thcalor< td=""><td>oluntary information</td><td></td><td>Oxygen Additives amount</td><td>Bromine (Br)</td><td>ma/ka (drv)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thcalor<></thcalorifie>                                                                                                                                                                                                                                                                                                | oluntary information                 |                                       | Oxygen Additives amount    | Bromine (Br)      | ma/ka (drv)   |           |           |               |                    |                 |              |               |                 |
| Interfeded woodchips and wood residues       Net: eacing in disability       Net: or disability       Net: or disability         security of fuel/binnass       Binn pellets of toneffed woodchips and wood residues       Binn pellets of toneffed                                                                                                                                                                                                                                                                                                                                         |                                      |                                       |                            | lodine (I)        |               |           |           |               |                    |                 |              |               |                 |
| Secretion of fuel/biomass       Brm pellets of torefield woodchips and forest       Cross card and accord of mail/biomass       More prelimiting         hotograph (file specification)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | Torrefied woodchins and wood residues |                            |                   | ilig/kg (uly) |           |           |               |                    |                 |              |               |                 |
| Image: Sector Plume-August 2012 EN 15290:2011 - Solid biofuels           ampling location         =           ato a construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       | Gloss calo 200-400 mm      |                   |               |           |           |               |                    |                 |              |               |                 |
| ampling location         63-100 mm         Silicon (Si)         mg/kg (dry)         2389         982         RR Sector P         June-August 2012         EN 15290:2011 - Solid biofuels           ate of sampling         15-2012         16-45 mm         Potassium (K)         mg/kg (dry)         3541         883         RR Sector P         June-August 2012         EN 15290:2011 - Solid biofuels           st size (no, m <sup>2</sup> )         1         16-45 mm         Potassium (K)         mg/kg (dry)         267         81         RR Sector P         June-August 2012         EN 15290:2011 - Solid biofuels           atin name         2.0-2.8 mm         Calcium (Ca)         mg/kg (dry)         6835         1593         RR Sector P         June-August 2012         EN 15290:2011 - Solid biofuels           ates         1.0-1 Amm         Magnesium (Mg)         mg/kg (dry)         6835         1593         RR Sector P         June-August 2012         EN 15290:2011 - Solid biofuels           ates         1.0-1 Amm         Inon (Fe)         mg/kg (dry)         431         138         RR Sector P         June-August 2012         EN 15290:2011 - Solid biofuels           opto producer (flue specification)         0.5-10 mm         Inon (Fe)         mg/kg (dry)         757         223         RR Sector P         June-August 2012         EN 15290:201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                       |                            | Aluminium (AI)    | mg/kg (dry)   | 224       | 86        |               | RR Sector F        | June-August     | 2012 EN 15   | 290:2011 - So | olid biofuels - |
| ate of sampling       1-5:012         total sampling       1-5:012         biolog(s) standard(s) of sampling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                       |                            | Silicon (Si)      | ma/ka (dry)   | 2389      | 982       |               | RR Sector F        | June-August     | 2012 EN 15   | 290·2011 - Sc | hid hiofuels .  |
| before         before         Ing RS (uf)         Oct 1         Oct 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      | 1-5-2012                              |                            |                   |               |           |           |               |                    |                 |              |               |                 |
| at size (ton, m <sup>2</sup> )       3.15 m m       Soldur (Na)       mg/kg (dry)       267       81       RR Sector P June-August 2012 EN 15290:2011 - Solid biofuels         atin name       2.0.2 m m       Calcium (Ca)       mg/kg (dry)       683       1593       RR Sector P June-August 2012 EN 15290:2011 - Solid biofuels         ame       2.0.2 m m       Calcium (Ca)       mg/kg (dry)       683       1593       RR Sector P June-August 2012 EN 15290:2011 - Solid biofuels         ame       1.0.4 m m       Increase a producer (in specification)       mg/kg (dry)       431       138       RR Sector P June-August 2012 EN 15290:2011 - Solid biofuels         god forduer (if kepscification)       0.5.0 m       Increase a producer)       Hosphorus (P)       mg/kg (dry)       431       138       RR Sector P June-August 2012 EN 15290:2011 - Solid biofuels         upplier of matrial (if not same as producer)       off       1.5.0 m       Increase a producer)       Hosphorus (P)       mg/kg (dry)       7.57       223       RR Sector P June-August 2012 EN 15290:2011 - Solid biofuels         de of nucl by submitter       21-5.013       Minor elements       Minor elements       Hinor elements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lethod(s)/standard(s) of sampling    |                                       | 8-16 mm                    |                   |               |           |           |               |                    |                 |              |               |                 |
| atin name         2.8-3.18 mm         2.8-3.18 mm         Calcium (Ca)         mg/kg (dry)         6835         1593         RR Sector P         June-August 2012         EN 15290:2011 - Solid biofuels           are         14-4 mm         Magnesium (Mg)         mg/kg (dry)         6835         1593         RR Sector P         June-August 2012         EN 15290:2011 - Solid biofuels           ares         14-4 mm         Magnesium (Mg)         mg/kg (dry)         806         165         RR Sector P         June-August 2012         EN 15290:2011 - Solid biofuels           ares         0 motor         10-5 mm         10-5 mm         10-7 mg/kg (dry)         757         223         RR Sector P         June-August 2012         EN 15290:2011 - Solid biofuels           are of input by submitter         of         15-10 mm         Insit (Fe)         mg/kg (dry)         757         223         RR Sector P         June-August 2012         EN 15290:2011 - Solid biofuels           ato input or the data to BIOATPhylis2         of         12-5 2013         12-8 10.7         RR Sector P         June-August 2012         EN 15290:2011 - Solid biofuels           fination (fm submitter)         12-5 2013         fination (fm submitter)         mg/kg (dry)         12-8         10.7         RR Sector P         June-August 2012         EN 15290:2011 - Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                       |                            | Sodium (Na)       | mg/kg (dry)   | 267       | 81        |               | RR Sector F        | June-August     | 2012 EN 15   | 290:2011 - So | olid biofuels - |
| interfactor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                            | Calcium (Ca)      | ma/ka (drv)   | 6835      | 1593      |               | RR Sector F        | June-August     | 2012 EN 15   | 290:2011 - So | lid biofuels -  |
| ame togen constraint of the data to BIODATPhylls2 constraint of the data to BIODATPhyl | roducer of fuel/biomass information: |                                       |                            | Magnesium (Mg)    |               |           | 165       |               |                    |                 |              |               |                 |
| Nether and some sproducer (ille specification) with (select one) Mether and some as producer (ille specification) with (select one) mg/kg (dry) 757 223 RR Sector P June-August 2012 EN 15290:2011 - Solid biofuels of function of the data to BIODATPhylis2 of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ame                                  | Topell                                |                            | 0 (0)             |               |           |           |               |                    | <u> </u>        |              |               |                 |
| goo of producer (ille specification)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dress                                |                                       |                            |                   |               |           |           |               |                    |                 |              |               |                 |
| Indirutin (II)         Indirutin (II)         Indirutin (II)         Indirutin (II)         Indirutin (II)         Indirutin (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ountry (select one)                  | Netherlands                           |                            | Phosphorus (P)    | mg/kg (dry)   | 757       | 223       |               | <b>RR Sector F</b> | June-August     | 2012 EN 15   | 290:2011 - So | lid biofuels -  |
| upplier or material (if not same as producer)     Image: Sproducer)       upplier or material (if not same as producer)     Image: Sproducer)       it not if not submitter     Image: Sproducer)       it not if not submitter's records     Image: Sproducer)       it not not submitter's records     Image: Sproducer)       it is to ash analyses in BIODAT/Phyllis2     Image: Sproducer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                            | Titanium (Ti)     | ma/ka (dry)   | 12.8      | 10.7      |               | RR Sector F        | June-August     | 2012 EN 15   | 290·2011 - Sc | lid hiofuels    |
| Initial of the data of point in the data     Initial of the data of point in the data       I of input by submitter     21-5-2013       I of multiple in the data     Initial of the data       I of multiple in the data     Initial of the data       I of multiple in the data     Initial of the data       I of multiple in the data     Initial of the data       I of multiple in the data     Initial of the data       I of multiple in the data     Initial of the data       I of multiple in the data     Initial of the data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                                       |                            |                   | ing/kg (ury)  | 12.0      | 10.1      |               |                    | Jourie / luguot |              | 200.2011 00   |                 |
| ormation from submitte's records erature references erature references fieldences fielde |                                      |                                       |                            | Minor elements    |               |           |           |               |                    |                 |              |               |                 |
| erature references ENDDAT/Phyllis2 ENDDAT/Phyllis2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | 21-5-2013                             |                            |                   |               |           |           |               |                    |                 |              |               |                 |
| iks to ash analyses in BIODAT/Phyllis2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                                       |                            |                   |               |           |           |               |                    |                 |              |               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                            |                   |               |           |           |               |                    |                 |              |               |                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                       |                            |                   |               |           |           |               |                    |                 |              |               |                 |

#### www.sector-project.eu The research leading



A European R&D project co-funded under contract 282873 within the Seventh Framework Programme by the European Commission.

Presentation at SECTOR Plenary Meeting, Pamplona Andreas Niebel Karlsruhe Institute of Technology (KIT)

1

## **Project Facts**



| Project Acronym   | BioBoost                                                                             |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------|--|--|--|--|
| Project Reference | 282873 in FP7                                                                        |  |  |  |  |
| Theme             | ENERGY.2011.3.7-1: Development of new or<br>improved sustainable bio-energy carriers |  |  |  |  |
| Contract type     | Collaborative project                                                                |  |  |  |  |
| Coordinator       | Karlsruher Institut fuer Technologie (KIT)                                           |  |  |  |  |
| Consortium        | 13 Beneficiaries from 6 countries                                                    |  |  |  |  |
| Start             | 01/2012                                                                              |  |  |  |  |
| Duration          | 42 month                                                                             |  |  |  |  |
| Budget            | 7.3 Mio €                                                                            |  |  |  |  |
| Funding           | 5.1 Mio €                                                                            |  |  |  |  |

### Partners

| 01 | Karlsruher Institut fuer Technologie                                      | KIT     |           |
|----|---------------------------------------------------------------------------|---------|-----------|
| 02 | Center for Research and Technology Hellas                                 | CERTH   |           |
| 03 | AVA-CO2-Forschung GmbH                                                    | AVA-CO2 |           |
| 04 | CHIMAR Hellas AE                                                          | CHIMAR  |           |
| 05 | EnBW Energie Baden-Württemberg AG                                         | ENBW    | C. a      |
| 06 | Nederlandse Organisatie voor Toegepast<br>Natuurwetenschppelijk Onderzork | TNO     | is<br>(Ic |
| 07 | GRACE GmbH & CO KG                                                        | GRACE   |           |
| 08 | Instytut Uprawy Nawozenia I Gleboznawstwa,<br>Panstwowy Instytut Badawczy | IUNG    |           |
| 09 | FHOÖ Forschungs & Entwicklungs GmbH                                       | FHOÖ    |           |
| 10 | Neste Oil Corporation                                                     | NESTE   |           |
| 11 | SYNCOM Forschungs- und<br>Entwicklungsberatung GmbH                       | SYNCOM  |           |
| 12 | DSM Chemical Technology R & D BV                                          | DSM     |           |
| 13 | Universitaet Stuttgart                                                    | USTUTT  | fro       |
| 14 | Deutsches Zentrum fuer Luft- und Raumfahrt                                | DLR     | IIC       |
|    |                                                                           |         | TN        |





rom 6 European countries

3

SYNCOM

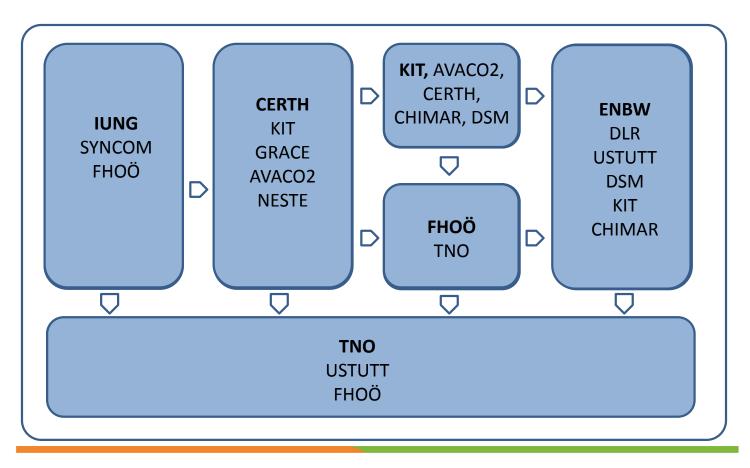
**V**<sub>DLR</sub>

## Objectives



BioBoost addresses the complete value chain

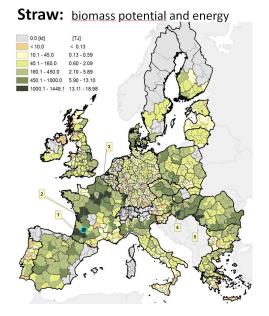
- from the determination of the feedstock potential
- the investigation of pyrolysis and hydrothermal carbonisation conversion technologies,
- the optimisation of transport and logistics
- to the exploitation of the energy carrier and its byproducts.
- And the techno-economic and sustainability (social and environmental) assessment of the complete supply chain.

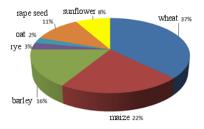

## Approach



- Investigate feedstock potential, costs and logistic of residual biomass in EU-28.
- Build-up a GEO-portal to present and display the GIS data.
- Identify an optimized energy carrier(s) produced by de-central conversion by fast pyrolysis, catalytic pyrolysis or hydrothermal carbonisation.
- Increase feedstock flexibility of applications by optimised energy carrier(s).
- Enable the use of wet and dry feedstocks for all applications.
- Investigate chemical byproducts of conversion.
- Develop a logistic model to identify most suitable plant locations based on supply and demand.
- Perform a technical, economical, environmental and social assessment of the chains, sensitivity and scenario analysis and LCA.
- Investigate and demonstrate energy carrier(s) application in CHP, gasification, refinery and chemistry

## Project Structure




## WP 1: Biomass supply

- Develop supply concepts of residual biomass for de-central conversion plants
  - Assessment of theoretical and technical biomass potentials in EU-27+CH
    - Biomass residues and waste
    - Compensation of seasonality by energy crops
  - Costs free field and of logistics
  - Next: Transport and logistic concept, GEO portal







## WP 2: De-central conversion technologies

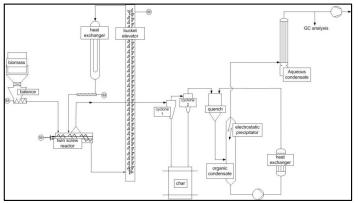
Convert biomass to intermediate energy carriers

- Selection and characterization of biomass types for de-central conversion pathways
- Optimization of conversion technologies
- Further optimization and production of test materials in kg- and ton-scale








## WP 2: De-central conversion



#### Fast Pyrolysis (FP) at KIT

Conversion of dry feedstock via pyrolysis to an intermediate energy carrier experiments on different process scales:





•Process demonstration unit: biomass feeding rate ~ 10-15 kg/h •Lab-scale fluidised-bed reactor: biomass feeding rate ~ 0.1 kg/h



bioliq<sup>®</sup> pilot plant:
 biomass feeding rate ~ 500 kg/h

## WP 2: De-central conversion



T 2.3: Energy carrier preparation, characterisation, handling and storage

Mixing and conveying with extruders

Mixtures of the product fractions *pyrolysis char* and *pyrolysis oil*  $\rightarrow$  slurries or pastes

Slurry mixing and agitation with different devices

•Variations in solid content and characterisation of the produced slurries

•Measuring of the power consumption during the mixing process











Paste - non flowing

Colloidal mixer

Slurry - flowable

Investigation of sedimentation behaviour of slurries

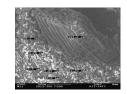




Sedimentation tower with segments and collected suspension-samples after a defined period

Characterisation of pyrolysis char
 →effects on mixing, sedimentation, powder flow properties

50


100 150 200 250

Particle size

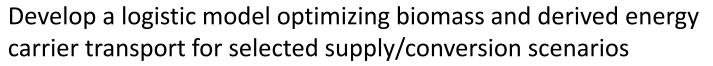
distribution



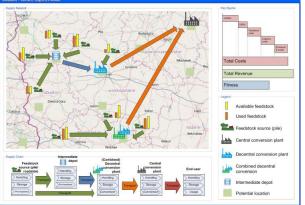
Char powder



Shape and structure


WP 3: Extraction of high value by-products

Improve economic performance of integrated process concepts by recovery of valuable materials and nutrients


- Analysis of valuable components from pyrolysis liquids and HTC process water
- Development of appropriate separation methods
- Investigation of potential use of phenols for polymers
- Investigation of by-producing HMF in HTC-processes
- Optimizing HTC-process including nutrient recovery

**BioBoost** 

## WP 4: Transport and logistics



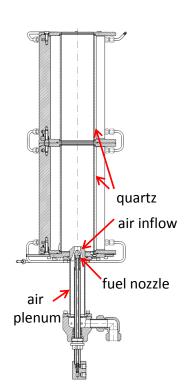
- Parameters: transportation means, distance, biomass availability, site analysis of pre-conversion plant, CO<sub>2</sub>emission, costs,...
- General model, verified by selected examples
- $\rightarrow$  Interaction with SECTOR!?



## WP 4: Transport and logistics

### Simulation/Optimization Prototype

- separate chain per feedstock
- evaluation of costs & emissions for
  - feedstock (exponential saturation penalty)
  - feedstock transport & handling (field to plant)
  - feedstock storage (throughput based)
  - conversion & construction (scalable plants)
  - revenue of intermediates
- optimization of
  - feedstock utilization (per region)
  - transport network



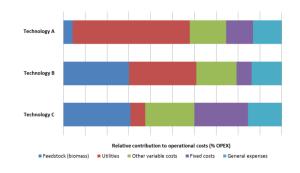

## WP 5: Application of energy carriers



Check and test for technical and economic utilization of the energy carriers available

- Combustion of pyrolysis and HTC products for heat and power production
- Use of catalytic pyrolysis oils as refinery feed
- Evaluation of syngas production
- Techno-economic assessment of separated valuable components



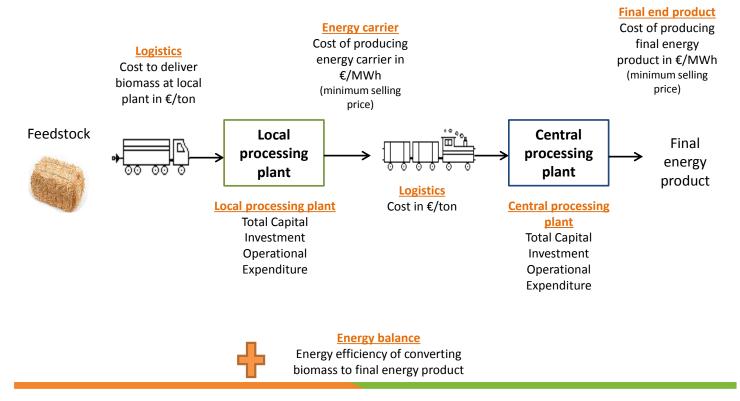

Liquids FLOX burner, DLR

## WP 6: Value chain assessment



Assess techno-economic feasibility as well as social and environmental impact of bio-energy carrier pathways in Europe

- Compare to other biomass and energy pathways
- Identify bottle necks and opportunities
- Prepare technical and market implementation
- Support decision making processes




#### WP 6: Value chain assessment **BioBoost** Pre-Feedstock conversion **Energy carrier** Application process S Wheat straw Bio-Oil, char, Gasification, Fast Extraction of valuable substa **Miscanthus** Pyrolysis slurry, paste CHP Phenols Scrap wood Spray combustion **Beech wood** + Gas turbine Catalytic Cardoon **Bio-oil Refinery feed Pyrolysis** Wheat straw Spent grain Hydro-Sewage thermal sludge CHP HTC coal Carbonisati **Municipal** on waste **SECTOR** Torre-Wood etc. **Torrefied biomass** CHP, Gasification etc. faction

**BioBoost** 

### WP 6: Value chain assessment

#### **Key Performance Indicators**



## WP 7: Dissemination



Share scientific results, contribute to strategic European goals, target group specific information to relevant stakeholders



## Thank you for your attention!

## Innovative and effective technology and logistics for forest residual biomass supply in the EU

[KBBE.2012.1.2-01]

Antti Asikainen

Metla, Joensuu

SECTOR meeting, PAMPLONA, Spain 16.10.2013



infres.

## **Objectives**

- INFRES aims at high efficiency and precise
  - deliveries of woody feedstock to heat, power and biorefining industries by:
    - Producing technological and logistic innovations for developing new harvesting, transport and storage
    - Demonstrating new solutions in full supply chains
    - Spotting the technological, economic, regulatory and other bottlenecks in the innovation
    - Assessing the environmental, economical and social sustainability
    - Disseminating the outcomes of research and demonstrations to the practices.

## Storyline

- What is INFRES?
  - Sustainability: Dimensions and a few indicators
  - Scattered results on sustainability indicators
  - What we could do together?

Infres

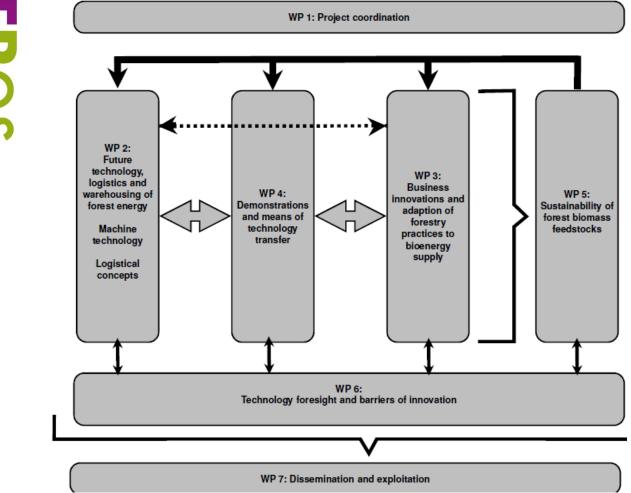
## Project consortium has 23 partners including

- 9 leading forest energy research organizations
- 13 SME
- 1 larger company

### • SME's include

- manufacturers of harvesting technology, chippers,
- feedstock supply enterprises,
- forest harvesting and transport providers,
- truck technology and
- IT service provider to manage fleet and storages.
  - Research organization
     SME
     Company




D

## Impact

## INFRES develops and demonstrates technological and logistical solutions that

- Decrease the fossil energy input in the biomass supply by 20% and
  - Reduce the raw material losses by 15%.
  - Reduce the cost of supply by 10-20%
  - Improve the economic outcome of CHP production by 10% by precision of supply
  - Diminish the CO2 emissions of feedstock supply by 10%.

## **Work Packages**



6

# WP5 Sustainability of forest biomass feedstocks

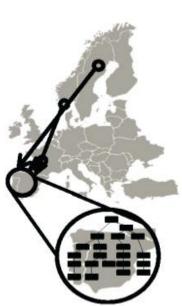
INFRES provides assessments on economic,
 environmental and social sustainability impacts for
 all new demonstration cases by

 adopting an assessment framework for sustainability impact assessment (SIA) of forest biomass supply using key indicators of environmental, economic and social sustainability

• assessing **sustainability impacts** for different fuel sources and harvest intensities, procurement methods and technologies

• calculating **economic impacts** in terms of costs and revenue of different alternatives and for selected user groups (e.g. forest owners)

infres


## WP5, continued

 state-of-the art biomass chains are quantified and compared to the INFRES demonstration cases as scenarios

 highlighting critical factors for forest biomass supply chain sustainability and identifying the areas of technological and logistical innovations to improve the sustainability of forest biomass supply

 ToSIA – Tool for Sustainability Impact Assessment (more info: <u>http://tosia.efi.int/</u>)

## Systematic Sustainability Impact Assessment approach by (To)SIA



*ToSIA is a flexible tool, based on three concepts:* 

- 1. Alternative process chains
- 2. Material flow along the chain
- Indicators per process multiplied with the material flow

ToSIA assesses the sustainability impacts of alternative supply chains.

Contracted by these because of (1640

*Source: Diana Tuomasjukka, European Forest Institute* 







## **S** Indicators for forest biomass

| Indicator ID | Full indicator name                                                                                                                                          | Selection of set |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1            | (1) GVA                                                                                                                                                      | minimum          |
| 2            | (2) Production cost                                                                                                                                          | minimum          |
| 7            | (7) Production of goods and services                                                                                                                         | minimum          |
| 8            | (8) Labour productivity                                                                                                                                      | minimum          |
| 9            | (9) Share of forest-based enterprises with new / improved products or processes, and share of turnover                                                       | extended         |
| 10           | (10) Number of persons employed in total and by gender                                                                                                       | minimum          |
| 11           | (11) Wages and salaries                                                                                                                                      | minimum          |
| 12           | (12) Occupational accidents and diseases                                                                                                                     | extended         |
| 14           | (14) Forest holdings and enterprises with third-party certified<br>management and share of wood sourced from third-party certified<br>sustainable production | minimum          |
| 15           | (15) Persons employed part-time, temporarily employed persons, and self-employed persons                                                                     | extended         |

extended

minimum

minimum

minimum

minimum

extended

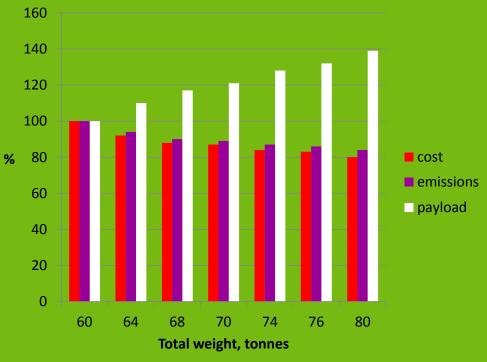
minimum

extended

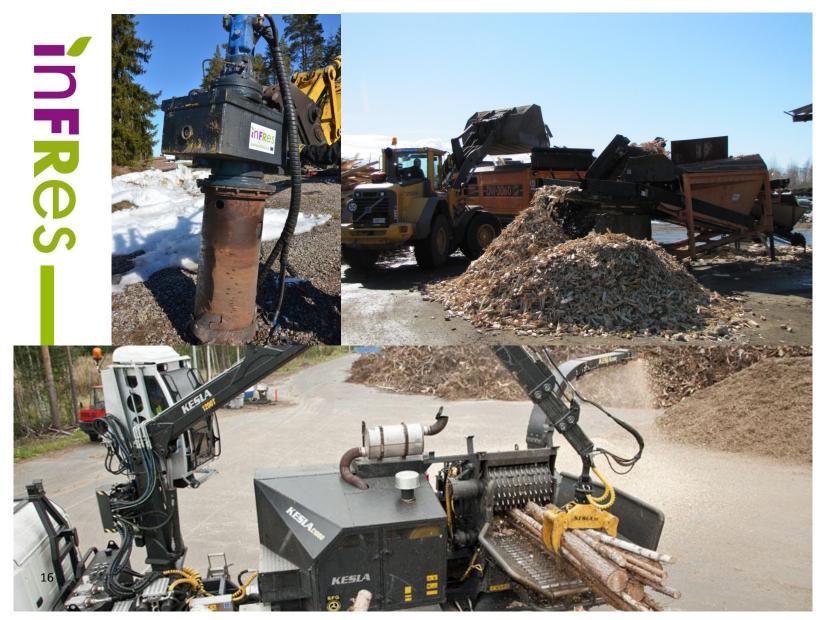
extended

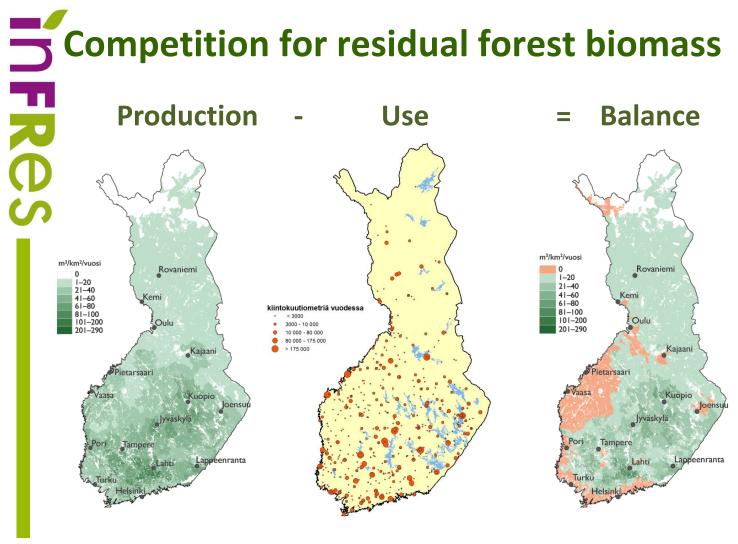
extended

| <b>NF</b> |                                                                                  |
|-----------|----------------------------------------------------------------------------------|
| 16        | (16) Provision of public forest services                                         |
| 18        | (18) Energy generation and Energy use                                            |
| 19        | (19) Greenhouse gas emissions and Carbon stock                                   |
| 20        | (20) Transport volume and distance                                               |
| 22        | (22) Forest area and balance of increment and fellings                           |
| 23        | (23) Soil condition as expressed by chemical soil properties and soil compaction |
| 25        | (25) Forest biodiversity                                                         |
| 28        | (28) Foraging resources (animal husbandry stock)                                 |
| 31        | (31) Recreation and aesthetics                                                   |
| 32        | (32) Biodiversity perception                                                     |
| 12        |                                                                                  |


# New technologies for SIA

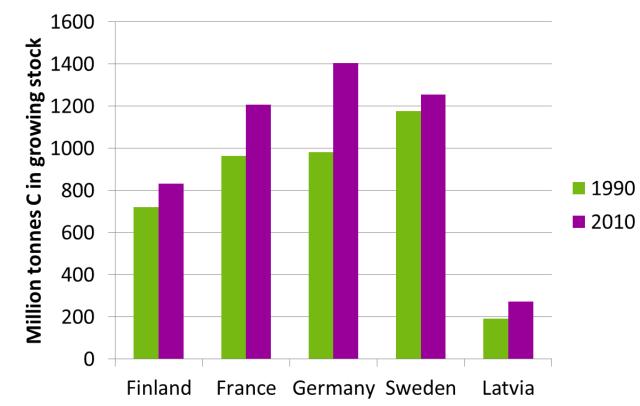
| Nr | Scenario name                                                             | region                                                        | definition of scenario                                                                                                                                                                                                                                                                                  | goal                                                            | assumption                                                                              | representative/suitability                                                                   |
|----|---------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| 7  | Demonstrations of novel<br>harvester head for<br>geometric thinning       | NEU<br>(Sweden)                                               | novel head - does that mean multiple<br>tree harvesting in precommercial<br>thinnings and thinnings (up to x cm)<br>for bioenergy wood? Geometric<br>thinning_ strips of x meters every y<br>meters, removing z m3/ha (is that<br>more or less than with selective<br>things, or just the same amount?) | Cost savings compared<br>with selective cut 20-<br>30%          | increase productivity by x%,<br>reduce fuel consumption by<br>y%                        | applicable for x% of pre-<br>commercial thinnings<br>and y% of thinnings                     |
| 8  | Demonstrations of extra<br>large trucks                                   | NEU (Finland,<br>Sweden)                                      | reference to ETT project (en trave till)<br>which features 90t trucks                                                                                                                                                                                                                                   | Fuel consumption<br>reduced by 20% and<br>transport cost by 10% | use of 90t trucks as opposed<br>to 60t legal limit in Sweden<br>and Finland             | x% of all transported m3<br>(bioenergy assortments)<br>in Scandinavia                        |
| 9  | Optimized chip truck<br>demonstrations                                    | SEU (Italy),<br>CEU<br>(Germany),<br>NEU (Finland,<br>Sweden) | what is being optimised? Moisture<br>content, form of transport, distance,<br>etc?                                                                                                                                                                                                                      | Fuel consumption<br>reduced by 20%                              | Raffaele, can you please<br>explain what differs as<br>opposed to usual<br>procedures   | x% of chip transports<br>(from forest to plant?)<br>can be improved by x%<br>in productivity |
| 10 | Demonstrations of<br>intermodal transportation<br>and terminal operations | NEU (Finland,<br>Sweden)                                      | Raffaele, can you please explain how<br>that works as opposed to usual<br>procedures                                                                                                                                                                                                                    |                                                                 | automatisation of what?                                                                 | x% of all road transports<br>can be shifted to<br>rail/water                                 |
| 11 | Demonstrations of<br>precision supply of wood                             | NEU (Finland,<br>Sweden)                                      | just in time delivery? Or optimised<br>logistics acc to product quality? Or sth<br>else?                                                                                                                                                                                                                | Improve<br>competitiveness and<br>economy of conversion         | [please describe]                                                                       | [please describe]                                                                            |
| 12 | Hybrid technology<br>chipper demonstrations                               | NEU<br>(Finland)                                              | Hybrid chipper means hybrid engine<br>[please give short description of<br>engine, fuels used and productivity]                                                                                                                                                                                         | Fuel consumption<br>reduced by 20%                              | for forest-road chipping or<br>for terminal chipping? Why<br>is it more fuel efficient? | can be used in x% of<br>chipping operations                                                  |


### Trucks are growing in volume and weight


- 60 tonne trucks in use for several decades
- 76 tonne trucks nowallowed on roads in Finland 90 tonne trucks have been tested in Sweden and
- 100 tonne trucks will be tested in Finland



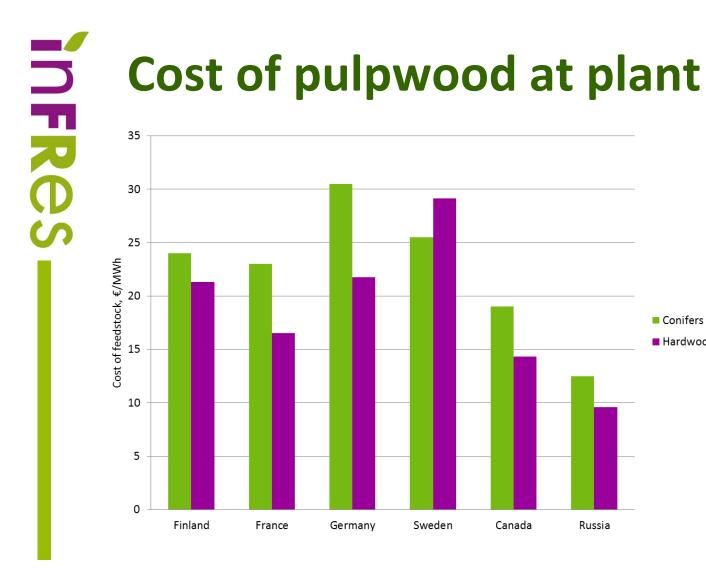


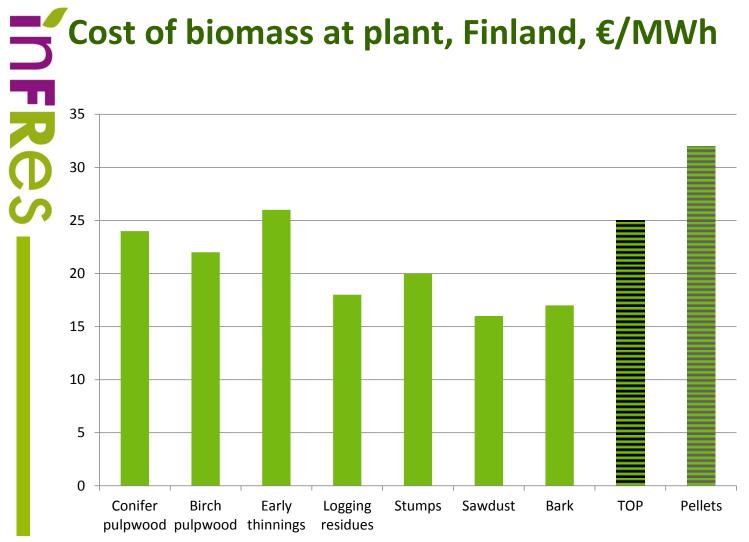






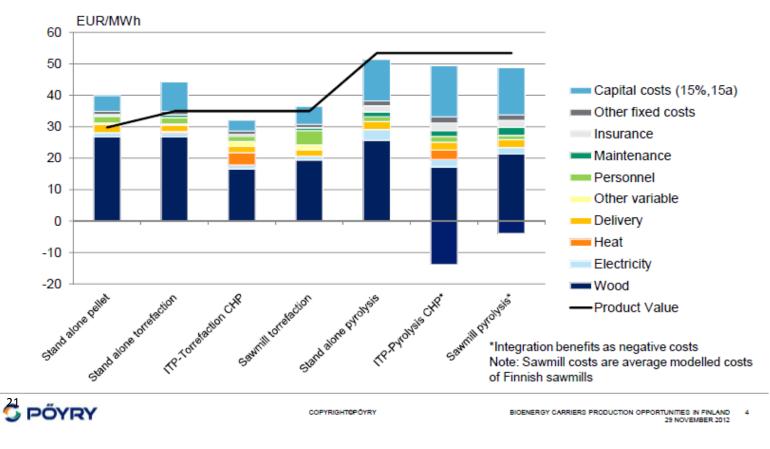

IN FR


## **Changes of carbon stock**




Conifers Hardwoods

Canada


Russia





## PRODUCTION COST COMPARISON OF BIOENERGY CARRIERS IN FINLAND

Torrefaction and pyrolysis could have feasible production costs versus the value of the products with current cost levels. Integrated concepts seem to have cost benefits against stand alone concepts.



### **Stump harvest and forest growth** 250 200 Growing stock, m3/ha 150 Stump harvest Reference 100 50 0 Pine Spruce All

### Stump harvest and nutrient status 1400 1200 1000 800 Stump harvest 600 Reference 400 200 0 Ν Ca(humus) K(humus) Mg(humus) P(humus) (humus+soil)

IN FR

D S

### **INFRES and SECTOR**

- INFRES produces quantified sustainability information on feedstock supply of residual forest biomass from EU
  - Northern, Western, Eastern and Southern EU
- SECTOR gives a realistic estimates on the "ability to pay for feedstock" in torrefaction facilities
  - Defines directly the economic viability of feedstock supply (mill gate price – cost of biomass supply = profit margin)
- INFRES WP5 (ToSIA) & SECTOR WP9 (BioChains)



## We keep EU's Forest Energy Promises

Deliverable 1.2

### IEA Bioenergy

## IEA Bioenergy Task 40

### Core objective:

'to support the development of sustainable, international bioenergy markets and international trade, recognising the diversity in resources and biomass applications'

## **Current Member Countries Task 40**

- Netherlands (T.L.)
- Austria
- Belgium
- Brazil
- Denmark
- Finland
- Germany
- Italy
- Norway
- Sweden
- UK
- USA

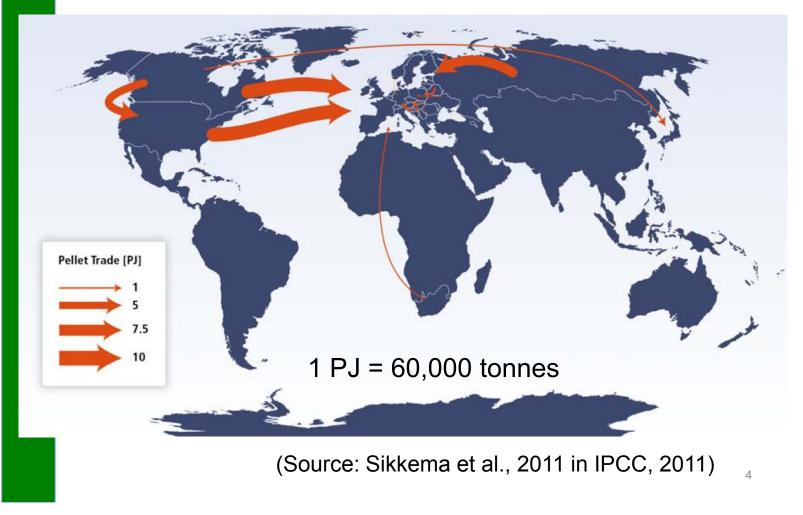
### Observer:

Canada

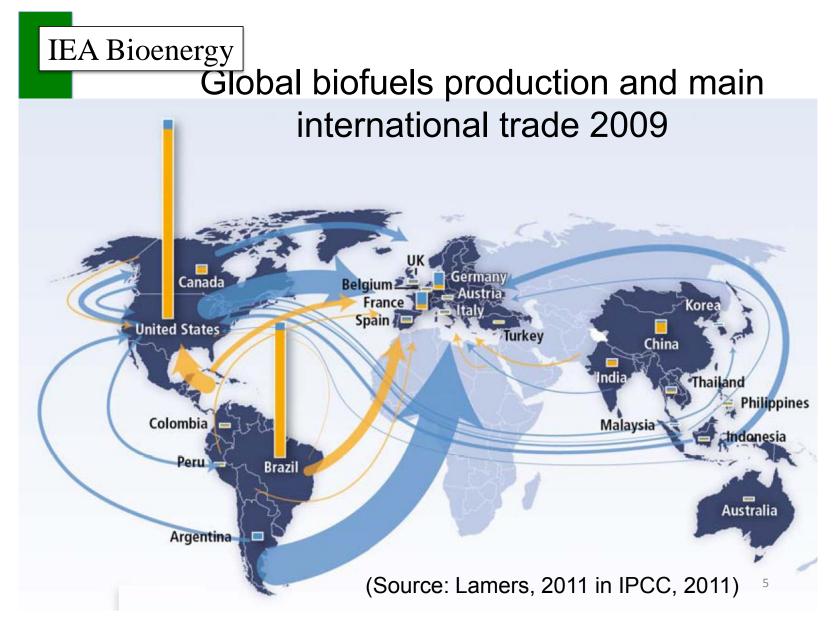
### **Explored**:

- Russia (will hopefully join in 2014)
- S. Korea

Global coverage & Good involvement of market parties!


Deliverable 1.2

### IEA Bioenergy


### Background

- International bioenergy trade of biodiesel, bioethanol and wood pellets have all increased by a factor of 10 between 2000-2010
- Main drivers: renewable energy and GHG reductions targets & security of supply, also socio-economic development and sustainable land-use

### Global wood pellet trade 2009



Deliverable 1.2



Deliverable 1.2

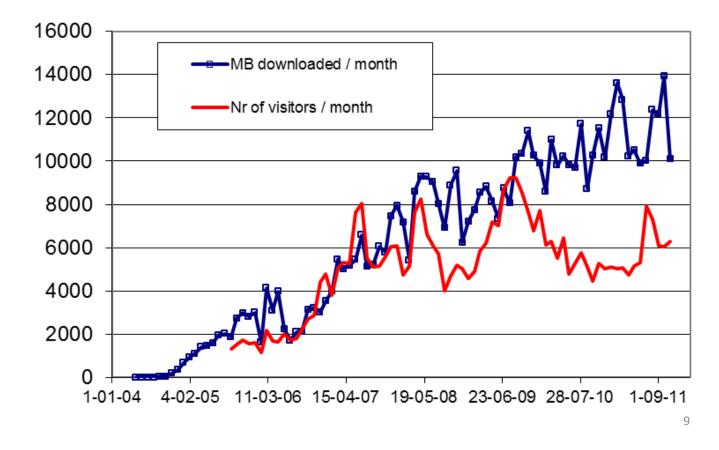
### IEA Bioenergy

### Background

- But many barriers remain: ensuring sustainable supply chains, technical & nontechnical trade barriers, lack of (investments in) logistical infrastructure, lack of proper information dissemination etc. etc.
- And strong further growth required to connect supply & demand and allow for e.g.
   > 50 EJ bioenergy use in 2050

## IEA Bioenergy of outputs related to torrefaction

- Joint workshop with Task 32 on torrefaction in Graz: 250 participants (Jan . 2011)
- Low cost, Long Distance Biomass Supply Chains (aug. 2013)
- Possible effect of torrefaction on biomass trade






### www.bioenergytrade.org



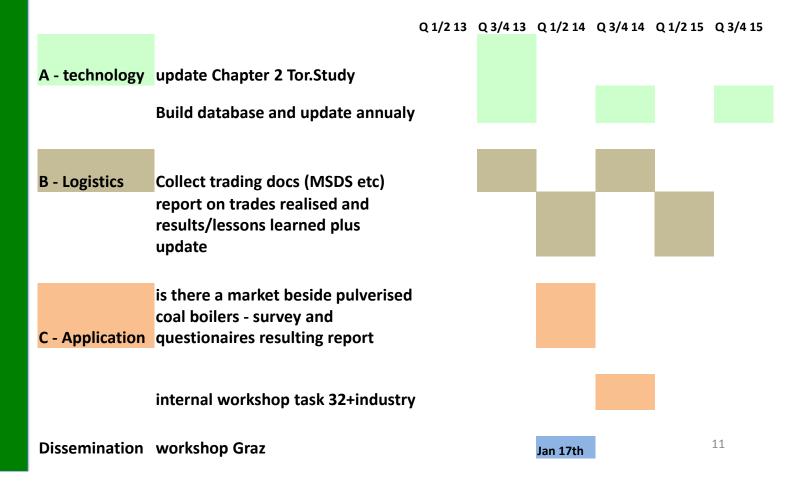
## Dissemination through the task 40 website bioenergytrade.org



## Work Programme 3rd Triennium

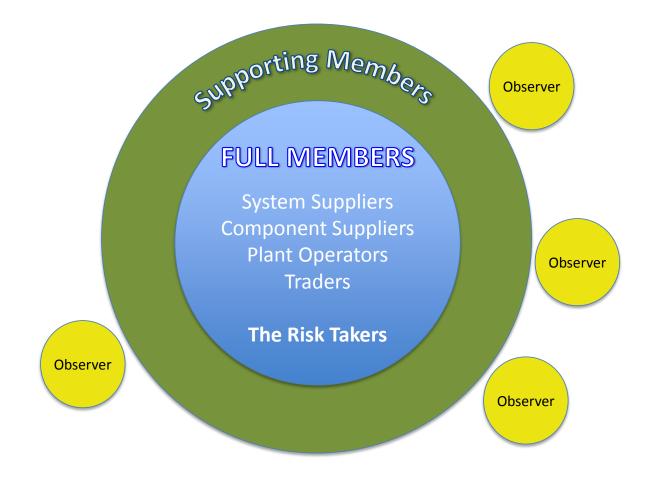
### Torrefaction is one of 5 major work topics

Main objective


support the continuation of technology development, dissemination of results and uptake of the "new" energy carrier in the consuming structures

Ongoing monitoring of initiatives and projects resulting in a living structure

Monitoring trading and trade routes, collection of general trading documents and building references


Analysing eventual trade routes to alternative consumer groups and consequences

### Task 40 Torrefaction activities 3rd Triennium





### **Statues – Membership Structure of IBTC**



## Statues – Decision making in IBTC

#### Membership Assembly

- Full and Suporting Members
- At least one per year

### **Steering Comitee**

• Full Members and President

- IBTC activities and financial management
- Decision about specific IBTC membership fees
- Approve new members and termination of memberships
- Proposal of IBTC specific membership fees
- Changes to the relation AEBIOM IBTC
- IBTC Statutes
- Strategic orientation of IBTC
- Budget of IBTC
- Election of the President for IBTC

#### **President**

#### **General Manager**

### **Objective and Mandate of IBTC**



- IBTC is a platform for companies organisations and individuals dedicated to the promotion of torrefied biomass for energy. Legally represented by AEBIOM it aims to bring the relevant people and companies in the sector together
- The Council to help developing a common view and approach in non competitive matters (examples H&S, Logistics etc)
- IBTC generally assists in building the torrefaction industry providing special assistance to its members in building the market

### **Objective and Mandate of IBTC**



- Promote the use of torrefied biomass as energy carrier and help overcoming the barriers to market deployment
  - Express the views of the torrefaction industry to the general public
  - Assist policy initiatives
  - support and participate in initiatives and projects dedicated to biomass torrefaction development (statistics, standarization, regulatory compliance...)
- Assist in removing barriers to market entrance and operation by torrefied biomass
- Promotes the processing technology in general with project developers and resource owners

### **Activities ongoing**



- Forming a common understanding of the product and assisting in development of the ISO standard
- Torrefaction workshops and meetings in conjunction with major biomass events (London, Brussels, Seoul, Miami)
- Comparison of MSDS within IBTC group
- Codes and along the supply chain (customs, IMO etc)
- REACH
- Buiding contacts to consumers, testing of torrefeid Biomass
- Volume Ticker
- Interfacing with task 40, RHC plattform,

## Thank you for paying attention W&P

Contact

*Michael Wild* Wild & Partner LLC



Auhofstrasse 142a A-1130 Vienna

T +43 1 879 99 57 michael@wild.or.at Skype: wildwien



IBTC: <u>calderon@aebiom.org</u>
<u>http://www.aebiom.org/blog/ibtc/</u>



