

Demand Side Management Implementation

in Downstream Digestate Treatment of a Biomethane Biorefinery

Lilli Sophia Röder¹, Arne Gröngröft¹, Julia Riese², Marcus Grünewald²

¹Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Leipzig, Germany | ²Ruhr University Bochum, Bochum, Germany

E2DT Conference - Palermo, Italy 22-25 October 2023

©2023 DBFZ | Pilot-SBG | Lilli Sophia Röder

Supervised by:

RUB

Juid V1

Demand Side Management

Demand Side Management

Supervised by:

Federal Ministry for Digital and Transport

RUB FiuidVT

©2023 DBFZ | Pilot-SBG | Lilli Sophia Röder

Demand Side Management

Task 1:	Identification of a new industry area with high DSM that has not yet been optimized for DSM implementation		Bio-fuel production
Task 2:	Development of a decision support tool to help estimate the profitability of a DSM implementation	orefir	
Task 3:	Application of decision support tool on new industry area in a case study		ing ing
Task 4:	Dynamic simulation and optimization of a DSM in new process for more realistic consideration		
General Question:	Is my process made for demand side management implementation from an economic point of view ?		Funded by: Supervised by: Federal Ministry Federal Ministry for Digital and Transport

©2023 DBFZ | Pilot-SBG | Lilli Sophia Röder

Background Task 2 Development of a decision support tool of a DSM implementation

Background Task 2 Development of a decision support tool of a DSM implementation

PILOT

SBG

Development of a decision support tool of a DSM implementation

PILOT 🔂

SBG

Development of a decision support tool of a DSM implementation

PILOT 🛟

SBG

Development of a decision support tool of a DSM implementation

PILOT 🛟

SBG

©2023 DBFZ | Pilot-SBG | Lilli Sophia Röder

Development of a decision support tool of a DSM implementation

PILOT

SBG

Development of a decision support tool of a DSM implementation

©2023 DBFZ | Pilot-SBG | Lilli Sophia Röder

Results Task 2 Development of a decision support tool of a DSM implementation

Röder et al. (2023) – DOI: 10.1002/bbb.2558

PILOT

Applying the decision support tool in a dynamic simulation environment Steps to answer Task 3 and 4

Methodology Task 3 Application of the decision support tool in a case study

Task 3:Application of decision support tool on new industry
area in a case study

Methodology Task 3: Application of the decision support tool in a case study

¹ Dotzauer (2020) – Gitlab.com/M.Dotzauer/gpm_dtbt

² Röder et al. (2022) – DOI:10.1002/er.8353

³ Etzold et al. (2023) – DOI: 10.1016/j.biteb.2023.101476

Results Task 3: Application of the decision support tool in a case study

R_{buf}

Does oversizing the process cause a decrease in total costs per year?

DSM strategies are based on the flexibility to turn a process off at times when prices are high but only serves an economic purpose if the monetary benefits exceed the increase in resulting capital costs

$$C_{totex}(F_{os}) = \left(a_{year} - b_{year} * \left(\tau - \frac{\tau}{F_{os} + 1}\right) * (1 - FOP_{min})\right) * EPC * \tau_{oph} + I_{ref,P} * r_P * (F_{os} + 1)^{R_P} + I_{ref,buf} * r_{buf} * \left(\frac{\left(\dot{m}_{buf}\right) * \left(\tau - \left(\frac{\tau}{F_{os} + 1}\right)\right)}{V_{ref}}\right)^{L_{ref}}$$

			C _{totex,0} [€/day]	F os,opt [%]	C _{totex,min} [€/day]	P _{econ} [€/day]	<i>t_{pb}</i> [a]
Costs - C in k€/a		Bale opener	122	90	115		
	Ctotev(Fos)	 Straw chopper 	269	184	236		
		Methanation	1555	0	1555		
	Ctotex(Fos,opt) Ccapex(Fos)	 Screw press 	115	0	115		
		Decanter centrifuge	927	209	821		
	Copex(Fos)	 Ultra filtration 	1051	0	1051		
	Oversizing factor – Fos in %	Reverse osmosis	294	372	243		

Application of the decision support tool in a case study

Results Task 3:

DSM strategies are based on the flexibility to turn a process off at times when prices are high but only serves an economic purpose if the monetary benefits exceed the increase in resulting capital costs

$$P_{econ} = C_{totex}(0\%) - C_{totex}(F_{os,opt})$$

$$t_{pb} = \frac{(C_{capex}(F_{os,opt}) - C_{capex}(0\%)) * t_{dep}}{C_{opex}(0\%) - C_{opex}(F_{os,opt})}$$

PILOT

SBG

Dynamic optimization reacts to average electricity price curve for electricity prices in 2022 for 24 hours

F_{os.opt} defines maximum throughput through process in dynamic simulation and equipment sizing

Oversizing factors F_{os} are predefined, to values are close to the value found in the pre-calculation but serve more realistic values in steps of 25%

Aspen Plus simulation of biorefinery described by Etzold et al. (2023) transferred to Aspen Custom Modeler

Methodology Task 4:

Dynamic optimization of process to evaluate DSM implementation

Process

feed

mp.

Buffer

tank ...pre"

From

step

previous

separation

Results Task 4:

Dynamic optimization of process to evaluate DSM implementation

The resulting values for C_{totex} are lower for all F_{os} factors than those for 200%, where optimal oversizing was initially assumed

In dynamic simulation result for optimal oversizing factor is F_{os} =100%

Deviations occur from steady-state results due to the switch-on and off times of the processes

Sensitivity Analaysis

Does oversizing the process cause a decrease in total costs per year?

Implementing DSM only serves an economic purpose if the monetary benefits exceed this increase in capital costs

Sensitivity analysis

Summary

- A tool for assessing economic parameters in DSM implementation for continuously operated processes has been proposed.
- The key aspect is determining the extent to which a process step should be oversized to maximize flexibility but not incur excessive additional costs.
- For the optimal oversizing factor a lower value was obtained in the dynamic simulation in comparison to the initial steady-state assumption, due to different electricity prices and reaction times in the dynamic perspective
- The biggest factors uncertainties influencing the economic profitability of DSM in continuously operated processes are electricity price fluctuations and investment costs for process and intermediate storage.

Outlook

	C _{totex,0} [€/day]	F os,opt [%]	<i>C_{totex,min}</i> [€/day]	P _{econ} [€/day]	t_{pb} [a]
Bale opener	122	90	115	7	8
Straw chopper	269	184	236	33	6
Methanation	1555	0	1555		-
Screw press	115	0	115		-
Decanter centrifuge	927	209	821	105	8
 Ultra filtration 	1051	0	1051		-
Reverse osmosis	294	372	243	51	6

Two of four processes in digestate treatment cascade suitable for DSM

Outlook: Could making the intermediate steps
 more flexible further minimize the total cost of the cascade?

Thank you for your attention!

Lilli Sophia Röder Department of Biorefineries Research Associate at Separation Techniques and Process development

DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH Torgauer Straße 116 D-04347 Leipzig

lilli.Sophia.roeder@dbfz.de +49 (0)341 2434-424

