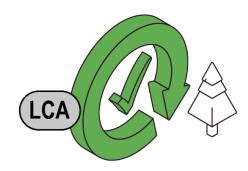
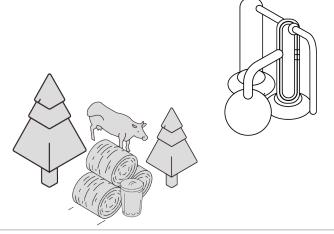


Biogene Rest- und Abfallstoffe: Betrachtung von Technologiepfaden mittels Ökobilanz

6. Bioraffinerietag: Schlüsseltechnologien für biobasierte Produkte und Kraftstoffe, 16.09.2025





Vorstellung & Hintergrund

02 Projekt: "Stoffströme-BK"

Ökobilanzmethodik

04 Beispiel: Biokunststoffe

⁰⁵ Zusammenfassung

Constantin Keul, MSc.

wissenschaftl. Mitarbeiter

Kontakt:

keul@ikk.uni-hannover.de

+49 511 762 13156

- Seit 2021 am Institut f
 ür Kunststoff- und Kreislauftechnik t
 ätig
- Fachlicher Hintergrund: Maschinenbau und Biomedizintechnik
- Spezialisierung auf: Nachhaltigkeitsbewertung seit 2020

Forschungsschwerpunkte:

- Nachhaltigkeitsbewertung von:
 - Organisationen (O-LCA)
 - Biobasierten Kunststoffen
 - Industriellen Anwendungsfällen

Institut für Kunststoff- und Kreislauftechnik

- Gegründet: 2019 an der Fakultät für Maschinenbau der LUH
- 38 MitarbeiterInnen/DoktorandInnen

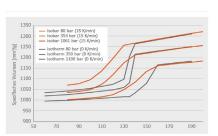
Forschungsschwerpunkte:

- Materialentwicklung und Verarbeitung
- Recycling und Ressourceneffizienz
- Biokunststoffe und aquatische Degradation
- Materialprüfung
- Kunststoffanalytik
- Nachhaltigkeitsbewertung von Prozessen und Materialien
- Anwendungsorientierte Umsetzung

Campus Maschinenbau der Leibniz Universität Hannover (LUH)

Fakultät Maschinenbau:

20 Institute 900 MitarbeiterInnen Forschungsförderung: 75 Mio. Euro p.a. 75 Dissertationen p.a. Ca. 5.000 Studierende



Institut für Kunststoff- und Kreislauftechnik

© Guido Marschall

© Göttfert

© IKK

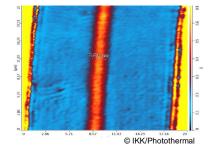
Kunststofftechnik und Recycling

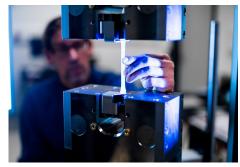
Kunststoffanalytik

IKK

Nachhaltigkeitsbewertung

Materialprüfung




© Nico Niemeyer

© Nico Niemeyer

© Nico Niemeyer

Analyse zum Rohstoff-, Technologie-, und Nachhaltigkeitspotenzial biobasierter Kunststoffe 2020 und 2030 für Deutschland, Akronym: BK Markt

Zielstellung: "Entwicklung eines eigenen Marktes für biobasierte Kunststoffe in Deutschland entlang aller Wertschöpfungsketten"

Biokunststoffe:

* ANDE IN GERMANT

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

FKZ 2220NR274X Laufzeit 04/2021 – 03/2024

Stoffströme BK – Hintergründe und Herausforderungen

- Zunehmender Wettbewerb um landwirtschaftliche Flächen
- Extreme Preissteigerungen und Volatilität auf dem Rohstoffmarkt aufgrund des Krieges in der Ukraine
- EU strebt Klimaneutralität bis 2050 an
- Hoffnung liegt u. a. in einer zirkulären, nachhaltigen Bioökonomie

Die Bioökonomie steht vor Zielkonflikten:

- Ernährungssicherheit vs.
- Tierfutter vs.
- Bioenergieversorgung vs.
- Rohmaterialien für die Industrie (Chemikalien, Plastik, Papier)

Kultur	Marktpreis 2021	Marktpreis (Mai 22)	prozentuale Steigerung
Weizen	220 €/t	440 €/t	100 %
Raps	425 €/t	928 €/t	118 %
Körnermais	247 €/t	357 €/t	44,5 %
Zuckerrübe	30 €/t	40 €/t	33 %
Palmöl	1.100 €/t	1.800 €/t	63 %
Stickstoffdünger	250 €/t	963 €/t	ca. 400 %

Quellen:

finanz.net, agrarheute.com, AMIS – Agrarmarktinformationssystem, statista, 05.2022

Der Krieg in der Ukraine und die Importabhängigkeit (Gas, Öl) verdeutlichen die wirtschaftliche Anfälligkeit und die Notwendigkeit einer größeren Autonomie

weitere Infos:

Analyse des Rohstoff-, Technologie- und Nachhaltigkeitspotenzials von biobasierten Kunststoffen in Deutschland

Forschungsschwerpunkt:

- Technische Umwandlungsprozesse zur Verwertung von Rest- und Abfallstoffen
- Biomassepotenzial mit Schwerpunkt auf Rest- und Abfallstoffen sowie Nebenprodukten
- Massenbilanzierte Biokunststoffe

Dauer: 09/2024 - 09/2026

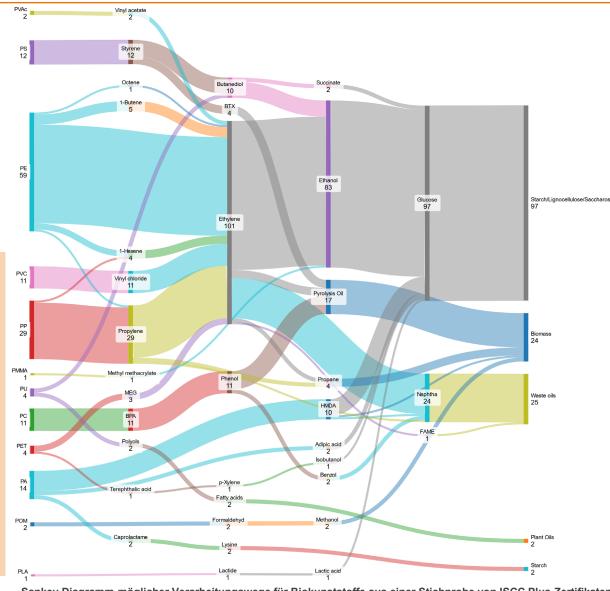
Forschungspartner

Forschungsziele:

- Bewertung und Evaluierung von Technologiepfaden
- Nachhaltigkeitsbewertung von drei Technologiepfaden auf der Grundlage ausgewählter, relevanter Biomassen und der dafür entwickelten Systemkonzepte
- Regionale Clusterbildung

Finanzierung

Gefordert durc


Stoffströme BK – Projekt Fokus

Institut für Kunststoffund Kreislauftechnik

- Realistische Planung erfordert Kenntnisse über die Kosten der Biomasseversorgung
- Erst dann kann die Nachhaltigkeit von Technologiepfaden bewertet werden

Fokus auf:

- Langfristiger Kohlenstoffbindung
- Kaskadennutzung und Recycling von Biomasse
- Erforschung regionaler Verarbeitungsmöglichkeiten und Bildung lokaler Wirtschaftsallianzen
- Strategien, die an regionale Gegebenheiten und die Verfügbarkeit von Biomasse anpassen werden

Definition: Nachhaltigkeitsbewertung / LCSA

Life Cycle Sustainability Assessment (LCSA)

- Bezeichnet die Bewertung aller negativen und positiven Auswirkungen auf Umwelt, Gesellschaft und Wirtschaft in Entscheidungsprozessen im Hinblick auf nachhaltigere Produkte über ihren gesamten Lebenszyklus hinweg (UNEP-SETAC)
- Erweitert den Anwendungsbereich der Ökobilanzierung von hauptsächlich nur Umweltauswirkungen auf alle drei Dimensionen der Nachhaltigkeit (Mensch, Planet und Wohlstand) (Guinee).
- Unterstützt Unternehmen dabei, Schwachstellen zu identifizieren und den Produktlebenszyklus weiter zu verbessern

Wirkungskategorien

LCSA Life Cycle Sustainability Assessment

Impact categories of LCSA

Climate Change Acidification Eutrophication Ozone Depletion Land use **Summer smog** Water consumption **Resource consumption Toxicity**

Working conditions Geographic location **Stakeholders Human rights** Governance **Health and safety** Socio-economic repercussion

Economic

LCC

Private costs

External relevant costs

Benefits

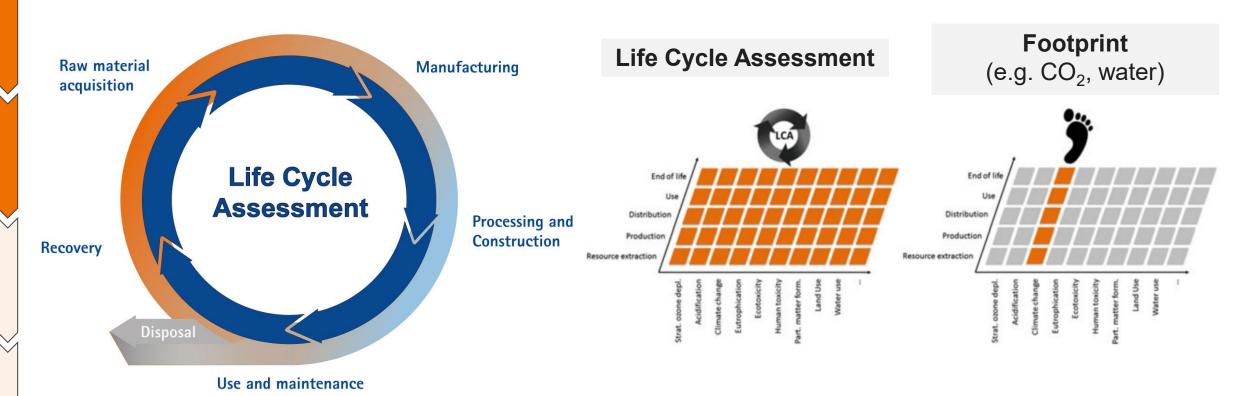
Net Present value

Discount rate

Profit

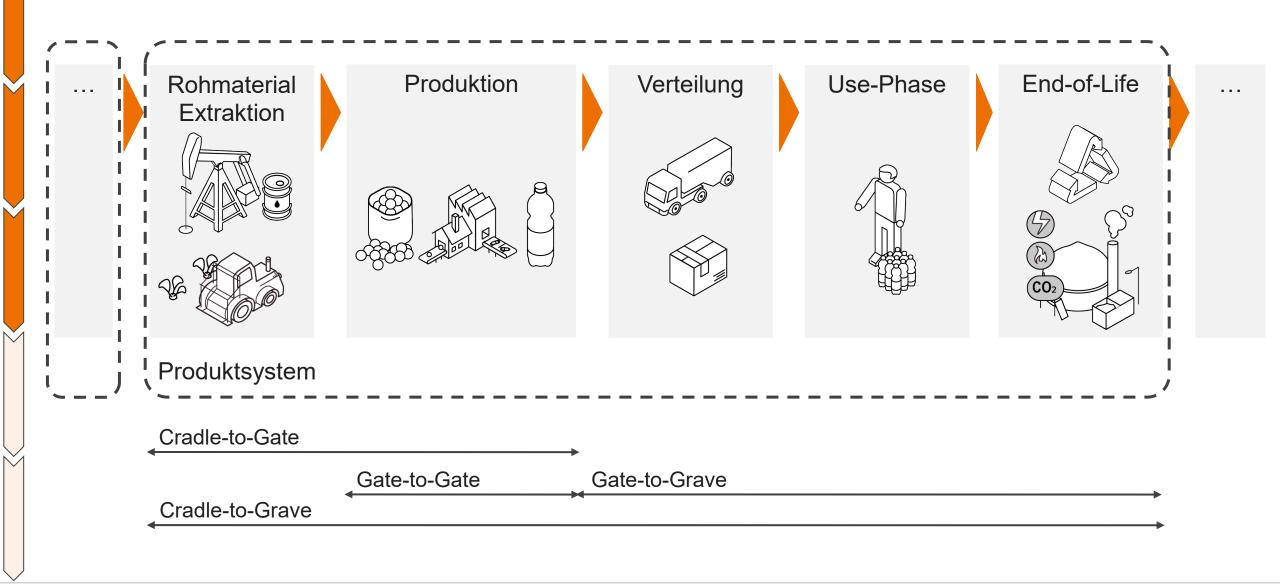
Perspective

(Customers)

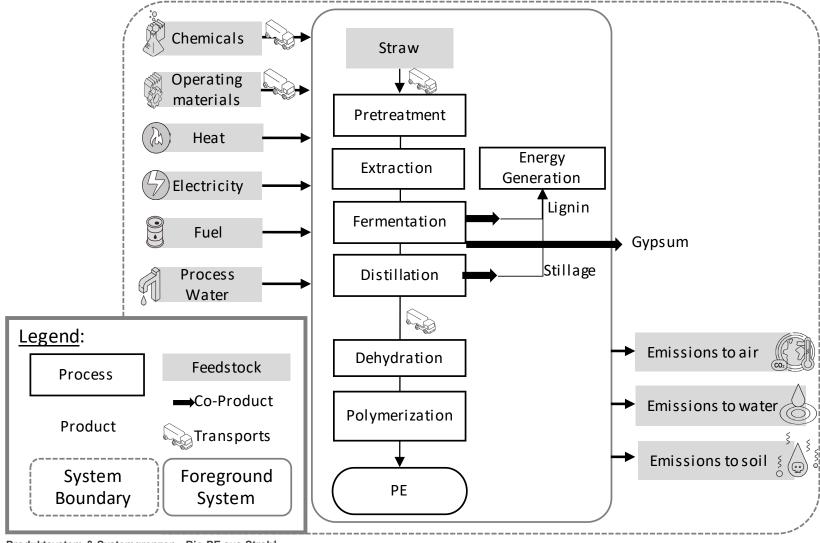


Merkmale der Ökobilanz / Life Cycle Assessment (LCA)

Die Ökobilanz untersucht die Umweltaspekte und potenzielle Auswirkungen während des gesamten Lebenszyklus eines Produkts (d. h. von der Wiege bis zur Bahre)

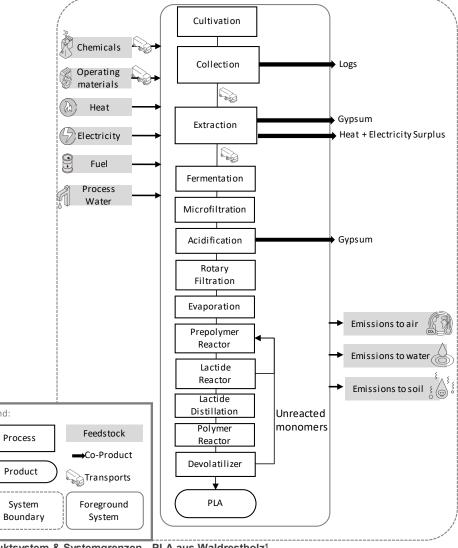


Wertschöpfungskette von Kunststoffprodukten



Beispielhafte Routen für biobasierte Kunststoffe: Bio-PE aus Stroh

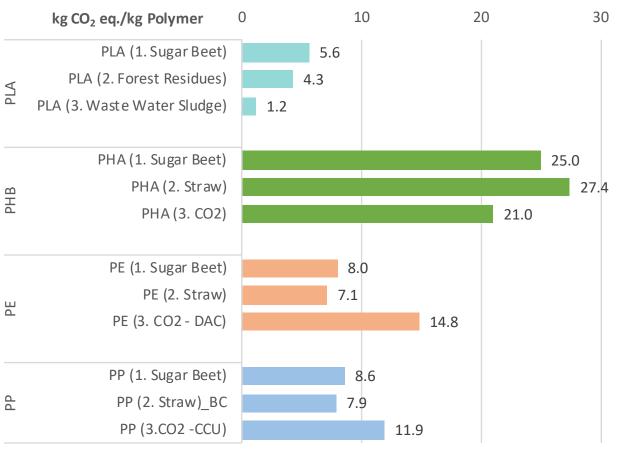
Produktsystem & Systemgrenzen - Bio-PE aus Stroh¹



Beispielhafte Routen für biobasierte Kunststoffe: PLA aus Waldrestholz

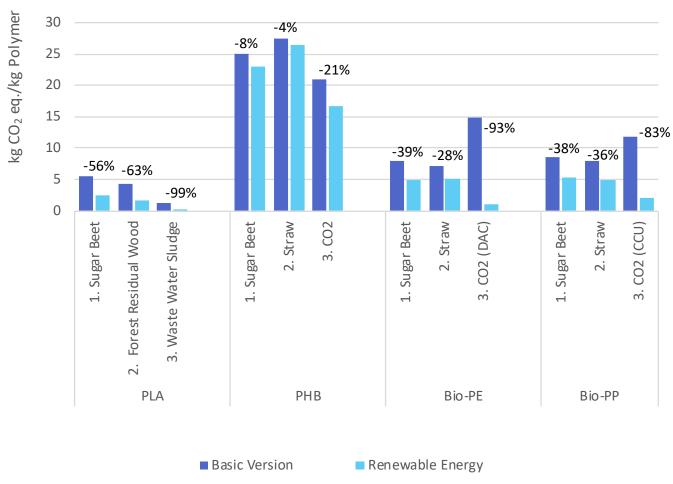
Legend:

Produktsystem & Systemgrenzen - PLA aus Waldrestholz¹



Climate Change-total (Basic Scenario)

Klimaänderung (gesamt) für Polymere aller Rohstoffgenerationen¹



Szenario: Erneuerbare Energie

Biopolymer Production with Renewable Energy

Szenario: Klimaänderung (gesamt) bei 100% erneuerbarer Energie für Polymere aller Rohstoffgenerationen¹

Zusammenfassung und Ausblick

Zusammenfassung

- Neben technologischen und ökonomischen Bewertungen bietet die Ökobilanz ein wichtige Entscheidungsgrundlage
 - Essentiell, um den ökologischen Einfluss bestehender oder neuer Verfahren zu bewerten
 - Identifikation von besonders einflussreichen Prozessen oder Lebenszyklusphasen
 - Sollte in nachhaltigen Entwicklungsprozessen miteinbezogen werden

Ausblick Stoffströme-BK Projekt:

- Nach Identifizierung von Top 3 Biomassen:
 - Bewertung von Technologiepfaden mittels Ökobilanz
 - Identifikation von Hotspots
 - Schaffung einer Entscheidungsgrundlage für die Etablierung nachhaltiger Produktionspfade für Biokunststoffe

Constantin Keul

Wissenschaftlicher Mitarbeiter Nachhaltigkeitsbewertung

E-Mail
keul@ikk.uni-hannover.de
Homepage
ikk.uni-hannover.de

Institut für Kunststoffund Kreislauftechnik

Leibniz Universität Hannover An der Universität 2 30823 Garbsen

Vielen Dank für Ihre Aufmerksamkeit!

