

Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages

UNTERSTÜTZER

TEAM ENERGIEWENDE BAYERN

Methanol aus Biogas - BMWK-Projekt "BioMeSyn"

Hanik, L.; Gradel, A.
BtX energy GmbH

Agenda

Wer sind wir?

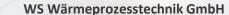
Technologie

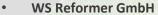
Vorgehensweise im Projekt BioMeSyn

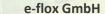
Aktueller Stand und Ergebnisse

Fazit & Ausblick

Wer sind wir?



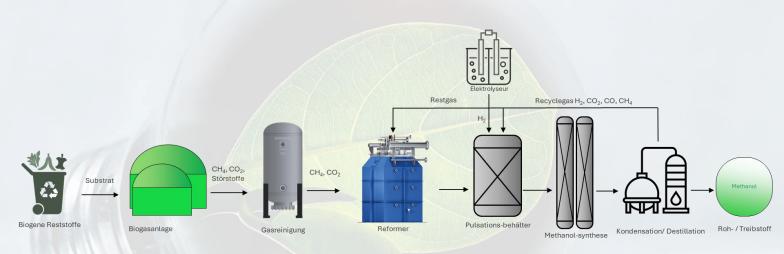




- Gegründet 1982
- Erfinder der FLOX®-Technologie
- Industriebrennertechnik

- 2003 aus der WS ausgegründet
- Reformertechnologien

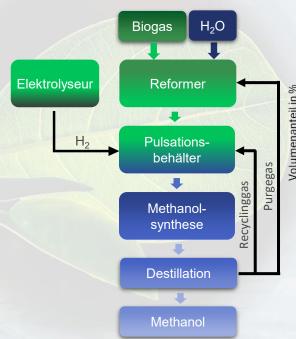
- 2006 aus der WS ausgegründet
- Anlagenbau
- **BtX energy GmbH**
- 2020 aus der WS ausgegründet
- Projektplanung

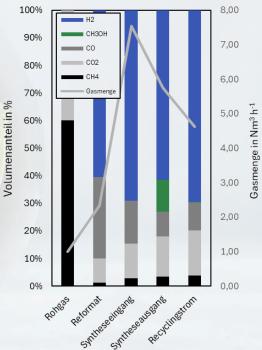


Technologie

Der Synthese-Prozess

Technologie

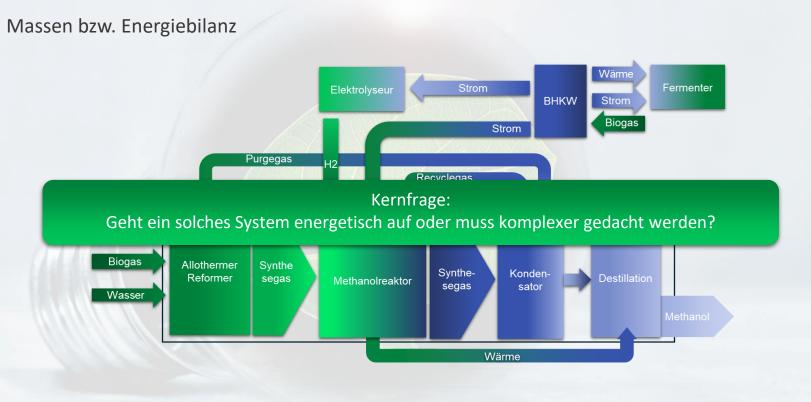

Wie funktioniert die Methanolsynthese?


- Methanreformierung aus Biogas $CH_4 + H_2O \overset{r_{ref1}}{\longleftrightarrow} CO + 3H_2$ $CH_4 + 2H_2O \overset{r_{ref2}}{\longleftrightarrow} CO_2 + 4H_2$
 - $CH_4 + CO_2 \stackrel{r_{ref3}}{\longleftrightarrow} 2CO + 2H_2$
- Methanolsynthese

$$CO + 2H_2 \stackrel{r_{syn1}}{\longleftrightarrow} CH_3OH$$

$$CO_2 + 3H_2 \stackrel{r_{syn2}}{\longleftrightarrow} CH_3OH + H_2O$$

$$CO + H_2O \stackrel{r_{syn3}}{\longleftrightarrow} CO_2 + H_2$$



Recyclinggas und Purgegas haben dieselbe Zusammensetzung

Technologie

Vorgehensweise im Projekt BioMeSyn

Arbeitspakete

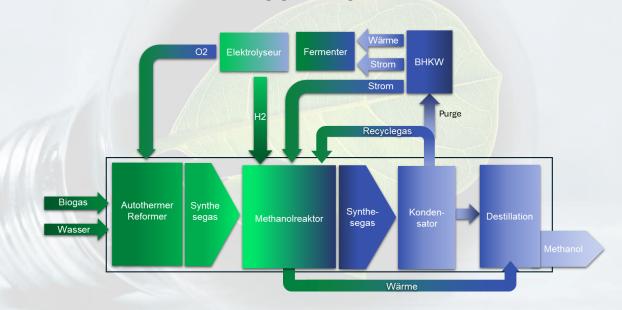
1 Erfassung der Technoökonomischen Ausgangssituation

2 Konzeptionierung, Dimensionierung und Systemintegration

3 Optimierung des flexiblen Anlagenbetriebs

4 Conceptual Design und Basic Engineering

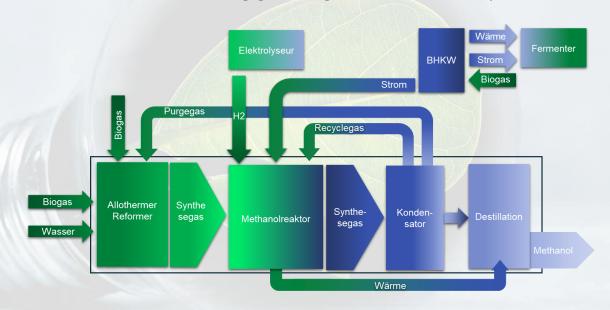
Vorgehensweise im Projekt BioMeSyn



Entwicklung verschiedener Szenarien

Szenario 1 – Autothermer Reformer mit Purgegasnutzung im BHKW

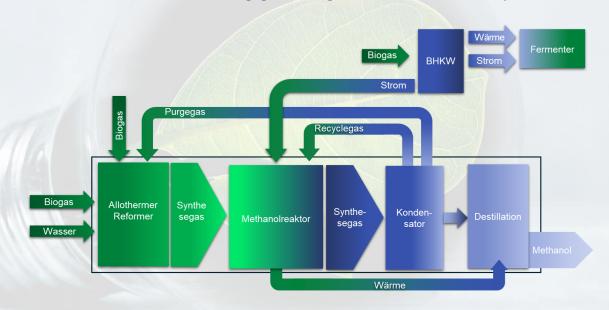
Vorgehensweise im Projekt BioMeSyn & BioMeSyn



Entwicklung verschiedener Szenarien

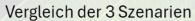
Szenario 2 – Allothermer Reformer mit Purgegasnutzung im Brenner und Elektrolyseur

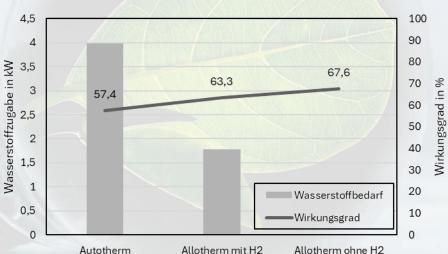
Vorgehensweise im Projekt BioMeSyn



Entwicklung verschiedener Szenarien

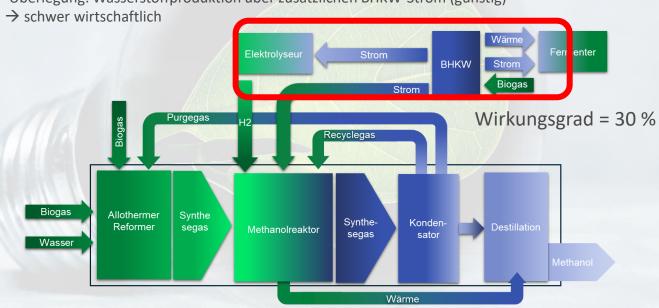
Szenario 3 – Allothermer Reformer mit Purgegasnutzung im Brenner, ohne Elektrolyseur

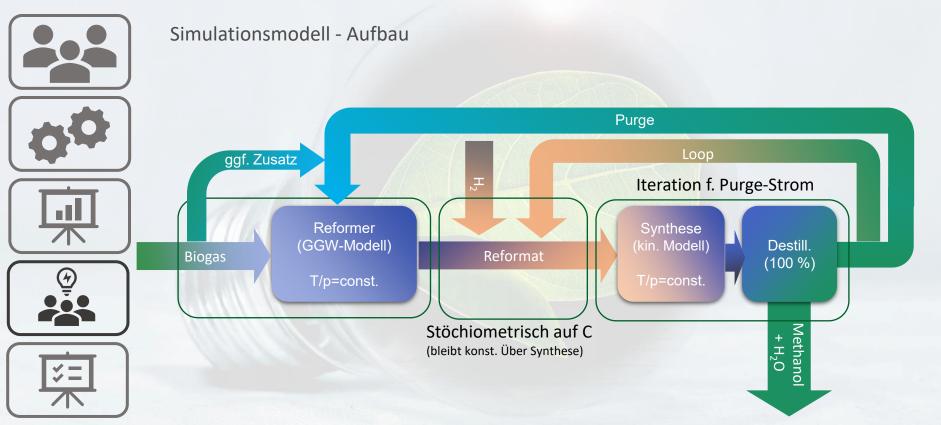




Simulationsmodell - Ergebnisse

• Vergleich der 3 Szenarien mit Betrachtung des chemischen Wirkungsgrades




Simulationsmodell - Ergebnisse

• Genauere Betrachtung von Variante 2 (Allothermer Reformer mit Purgegasnutzung im Brenner)

Überlegung: Wasserstoffproduktion über zusätzlichen BHKW-Strom (günstig)

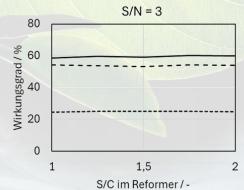
Simulationsmodell - Ergebnisse

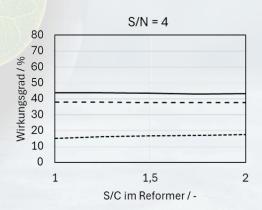
- Simulation mit Scilab und Python
- Verschiedene Modelle f
 ür die Kinetik in der Synthese getestet (u.a. Graaf, Nestler)
- Parameterstudie mit der Kinetik nach F. Nestler durchgeführt (MegaMax 800)
- für Synthesetemperaturen von 220, 230 und 240 °C, einem konstanten Synthesedruck von 50 bar und einer konstanten Reformertemperatur von 900 °C
- Variation von
 - > S/C im Reformer (zwischen 1 und 2,5)
 - ➤ Menge des Katalysators in der Synthese (zwischen 0,5 und 2,5 kg/Nm³ Biogasinput)
 - > unterschiedliche Stöchiometrien (zwischen 1 und 2) pro Durchlauf

Parameterstudie - Ergebnisse

Vergleich der Parameter für die verschiedenen Szenarien

Szenarien	1	2	3	3 mit CO ₂ -Abscheidung	
// //	Autotherm	Allotherm			
	mit H ₂	mit H ₂	ohne H ₂	CO ₂ -Abscheidung	Einheit
Verfügbares Biogas	350	350	350	262,5	Nm ³ /h
Biogas für Brenner	0	20,3	44,8	13,39	Nm³/h
Wasserzugabe	277,49	261,40	241,97	197,51	V h
Biogasinput für Synthese	350	329,7	305,2	249,11	Nm ³ /h
Wasserstoffzugabe	465,03	207,55	0	0	Nm³/h
Stöchiometrie	1	1	0,7	1	-
Wirkungsgrad	57,4	63,3	67,6	65,00	%
Methanolausbeute	455	390,81	321,7	309,0	V h
Kompressorenleistung	140,35	133,0	106,75	97,65	kW





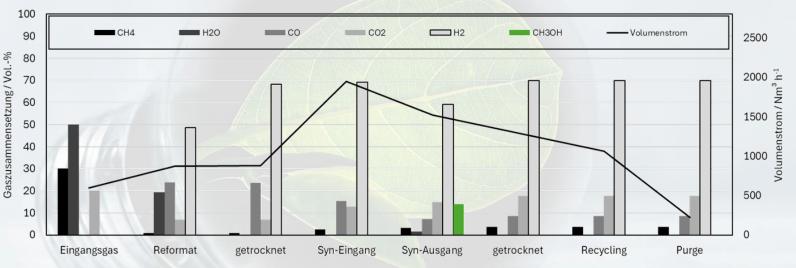
Parameterstudie - Ergebnisse

- Festlegung auf Szenario 2 Allothermer Reformer mit H2-Zugabe
- Verfeinerung des Modells
- Synthesetemperatur von 220 °C, Druck von 50 bar, S/C von 1
- Durchläufe mit verschiedenen Stöchiometrie Nummern

Simulationsmodell - Ergebnisse

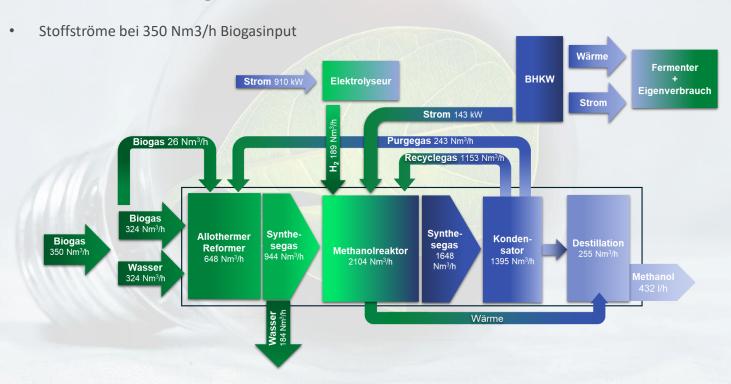
- Besten Ergebnisse bei S/N = 2 mit Wirkungsgrad von 70 %, Methanolausbeute von 432 l/h
- Wirtschaftlichster Betriebspunkt :
 - 220 °C Synthesetemperatur
 - > 50 bar Synthesedruck
 - S/C von 1
 - Stöchiometrie von 1 (entspricht S/N = 2)
 - Katalysatormasse von 30 kg je Röhre

Szenario 2			
	Allotherm		
V 11/1/2	mit H ₂	Einheit	
Verfügbares Biogas	350	Nm³/h	
Biogas für Brenner	26	Nm³/h	
Biogas für H2	0	Nm3/h	
Biogas für Reformer	324		
Wasserzugabe	257	Vh	
Biogasinput für Synthese	324	Nm³/h	
Wasserstoffzugabe	189	Nm³/h	
Stöchiometrie	1	-	
Wirkungsgrad	70	%	
Methanolausbeute	432	l/h	
Kompressorenleistung	143	kW	



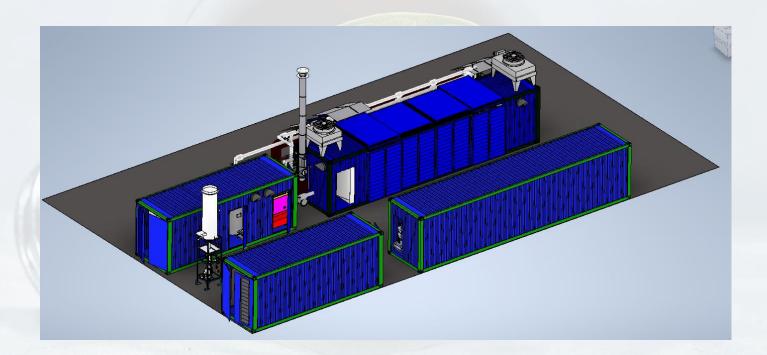
Simulationsmodell - Ergebnisse

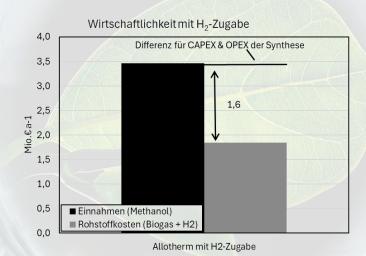
Allothermer Reformer mit H2-Zugabe


60 Vol.-% $CH_{4,}T_{ref}$ = 900 °C, S/C = 1, Stöch.(H_2) = 1, T_{syn} = 220 °C, p_{syn} = 50 bar,

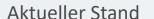
Wirkungsgrad (chemisch) 70 % (!)

Simulationsmodell - Ergebnisse




CAD-Modell einer potenziellen Anlage

Wirtschaftlichkeitsüberschlag auf Basis der Ergebnisse



Annahmen: 8000 Vollaststunden, 11 € Wasserstoffpreis (20 ct/kWh Netzstrom), Methanolpreis 1 €/l

Fazit und Ausblick

- Ein Python-Modell zur Simulation und Analyse der Energiebedarfe, Stoffströme und Prozessparameter wurde entwickelt
- Unterschiedliche Umsetzungsvarianten wurden überprüft
- Festlegung auf ein Szenario
- Fließschemen und Kalkulation der Stoff- und Energieströme wurden erstellt
- Erster Wirtschaftlichkeitsüberschlag wurde durchgeführt

Offene Fragen

Bekommen wir Zusatz-Überschussstrom für Wasserstoff günstig, weil Biogas keine anwendbare Quelle ist?

Kontaktdaten

Dr.-Ing. Andy Gradel Geschäftsführer

BtX energy GmbH Esbachgraben 1 95463 Bindlach

Tel.: 0171/264-2839

E-Mail: andy.gradel@btx-energy.de

Lena Hanik, B. Eng. Projektingenieurin

BtX energy GmbH Esbachgraben 1 95463 Bindlach

Tel.: 0176 1050 8775

E-Mail: lena.hanik@btx-energy.de

Gefördert durch:

Bundesministerium für Wirtschaft und Klimaschutz

aufgrund eines Beschlusses des Deutschen Bundestages